Skip to main content
Log in

Differences in Gene Expression and Regulation during Ontogenetic Phase Change in Apple Seedlings

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

A woody perennial plant has to undergo a gradual and continuous process of transition from juvenility to reproductive maturity. To better understand the underlying mechanism of ontogenesis, our aim in this study was to identify differentially expressed genes between juvenile phase and adult phase not only among different seedlings but also among different hybrid crosses. Two reciprocal subtracted cDNA libraries of juvenile versus adult phases were constructed using suppression subtractive hybridization (SSH) in an apple (Malus domestica Borkh.) hybrid seedling (Jonathan × Golden Delicious). The expression uniformity of genes between the two ontogenetic phases was reconfirmed by real-time PCR (RT-qPCR) in three seedlings from the same population and also in three seedlings from different hybrid populations. Some potential post-transcriptional regulated genes were confirmed by semi-quantitative PCR. Eighty-five expressed sequence tags (ESTs) were up-regulated in the juvenile phase, and 103 ESTs were up-regulated in the adult phase. The transcription of genes associated with lipid metabolism, chloroplast protein metabolism and secondary metabolism was up-regulated in the adult phase; however, the expression of some phytohormone responsive genes was up-regulated during the juvenile phase. Several ontogenetic differential genes, such as rbcS, differed in sequences or elements in mRNA 3′ untranslated region (3′ UTR). In summary, the ontogenetic variations are probably under both transcriptional and post transcriptional regulation. The expression of redox related genes differed between juvenile and adult phase, indicating that redox homeostasis may play a role in vegetative phase change and floral transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c
Fig. 5
Fig. 6a–c
Fig. 7

Similar content being viewed by others

References

  • Albrechtov JTP, Walczysko P, Espinel S, Wagner E, Ritter E (2000) Tree maturation characterized by in vivo studies in Pinus radiata on pH patterns at the apex and systemic electrophysiological responses. Plant Physiol Biochem 38:781–787

    Article  Google Scholar 

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Amo-Marco JB, Vidal N, Vieitez AM, Ballester A (1993) Polypeptide markers differentiating juvenile and adult tissues in chestnut. J Plant Physiol 142:117–119

    Article  CAS  Google Scholar 

  • Bashandy T, Meyer Y, Reichheld JP (2011) Redox regulation of auxin signaling and plant development in Arabidopsis. Plant Signal Behav 6:117–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  CAS  PubMed  Google Scholar 

  • Bergonzi S, Albani MC (2011) Reproductive competence from an annual and a perennial perspective. J Exp Bot 62:4415–4422

    Article  CAS  PubMed  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Plant peroxiredoxins: catalytic mechanisms functional significance and future perspectives. Biotechnol Adv 29:850–859

    Article  CAS  PubMed  Google Scholar 

  • Bitonti MB, Cozza R, Chiappetta A, Giannino D, Ruffini CM, Dewitte W, Van Mariotti D, Onckelen H, Innocenti AM (2002) Distinct nuclear organization DNA methylation pattern and cytokinin distribution mark juvenile juvenile-like and adult vegetative apical meristems in peach (Prunus persica (L.) Batsch). J Exp Bot 53:1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Bon MC (1988) J 16: an apex protein associated with juvenility of Sequoiadendron giganteum. Tree Physiol 4:381–387

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Gao Y, Wang Y, Li CM, Zhao YB, Han ZH, Zhang XZ (2011) Differential expression and modification of proteins during ontogenesis in Malus domestica. Proteomics 11:4688–4701

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth A, Cox LL, MacNicol AM (2004) Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. J Biol Chem 17:17650–9

    Article  Google Scholar 

  • Claudot AC, Drouet A, Jay-allemand C (1992) Tissue distribution of phenolic compounds in annual shoots from adult and rejuvenated hybrid walnut trees. Plant Physiol Biochem 30:565–572

    CAS  Google Scholar 

  • Claudot A, Ernst D, Sandermann H, Drouet A (1997) Chalcone synthase activity and polyphenolic compounds of shoot tissues from adult and rejuvenated walnut trees. Planta 203:275–282

    Article  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang HJ, Zhong SQ, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Tullio MC, Jiang K, Feldman LJ (2010) Redox regulation of root apical meristem organization: connecting root development to its environment. Plant Physiol Biochem 48:328–336

    Article  PubMed  Google Scholar 

  • Dick JM, Leakey RRB (2006) Differentiation of the dynamic variables affecting rooting ability in juvenile and mature cuttings of cherry (Prunus avium). J Hortic Sci Biotechnol 81:296–302

    Google Scholar 

  • Donaire L, Pedrola L, de la Rosa R, Llave C (2011) High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.). PLoS ONE 6:e27916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fraga MF, Rodriguez R, Canal MJ (2002) Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata. Tree Physiol 22:813–816

    Article  CAS  PubMed  Google Scholar 

  • Friend DJ, Bodson M, Bernier G (1984) Promotion of flowering in Brassica campestris L cv Ceres by sucrose. Plant Physiol 75:1085–1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frydman VM, Wareing PF (1973) Phase change in Hedera helix L I: gibberellin-like substances in the two growth phases. J Exp Bot 24:1139–1145

    Article  CAS  Google Scholar 

  • Giovannelli A, Giannini R (2000) Reinvigoration of mature chestnut (Castanea sativa) by repeated graftings and micropropagation. Tree Physiol 20:1243–1248

    Article  PubMed  Google Scholar 

  • Greenler JM, Sloan JS, Schwartz BW, Becker WM (1989) Isolation characterization and sequence analysis of a full-length cDNA clone encoding NADH-dependent hydroxypyruvate reductase from cucumber. Plant Mol Biol 13:139–150

    Article  CAS  PubMed  Google Scholar 

  • Greenwood MS (1987) Rejuvenation of forest trees. Plant Growth Regul 6:1–12

    Article  CAS  Google Scholar 

  • Greenwood MS (1995) Juvenility and maturation in conifers: current concepts. Tree Physiol 15:433–438

    Article  PubMed  Google Scholar 

  • Greenwood MS, Ward MH, Day ME, Adams SL, Bond BJ (2008) Age-related trends in red spruce foliar plasticity in relation to declining productivity. Tree Physiol 28:225–232

    Article  CAS  PubMed  Google Scholar 

  • Hackett WP (1985) Juvenility maturation and rejuvenation in woody plants. Hortic Rev 7:109–155

    Google Scholar 

  • Hafiz IA, Abbasi NA, Ahmad T, Hussain A (2008) DNA methylation profiles differ between juvenile and adult phase leaves of crab apple (Malus micromalus) seedling tree. Pak J Bot 40:1025–1032

    CAS  Google Scholar 

  • Hasbún R, Valledor L, Berdasco M, Santamaria E, Cañal MJ, Rodriguez R, Rios D, Sánchez M (2005) In vitro proliferation and genome DNA methylation in adult chestnuts. Acta Hortic 693:333–340

    Google Scholar 

  • Hildbrand M, Andreas F, Feller U (1994) Protein catabolism in bean leaf discs: accumulation of a soluble fragment of ribulose-1,5-bisphosphate carboxylase/oxygenase under oxygen deficiency. J Exp Bot 45:1197–1204

    Article  CAS  Google Scholar 

  • Hillman JR, Young I, Knights BA (1974) Abscisic acid in leaves of Hedera helix L. Planta 119:263–266

    Article  CAS  PubMed  Google Scholar 

  • Huang LC, Hsiao LJ, Pu SY, Kuo CI, Huang BL, Tseng TC, Huang HJ, Chen YT (2012) DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens. Physiol Planta 145:360–368

    Article  CAS  Google Scholar 

  • Huang LC, Lius S, Huang BL, Murashige T, Mahdi EF, Van Gundy R (1992) Rejuvenation of Sequoia sempervirens by repeated grafting of shoot tips onto juvenile rootstocks in vitro: model for phase reversal of trees. Plant Physiol 98:166–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Hutchison KW, Sherman CD, Weber J, Smith SS, Singer PB, Greenwood MS (1990) Maturation in larch: II. Effects of age on photosynthesis and gene expression in developing foliage. Plant Physiol 94:1308–1315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jay-Allemand C, Cornu D, Macheix JJ (1988) Biochemical attributes associated with rejuvenation of walnut tree. Plant Physiol Biochem 26:139–144

    CAS  Google Scholar 

  • Kawabata S, Li Y, Saito T, Zhou B (2009) Identification of differentially expressed genes during flower opening by suppression subtractive hybridization and cDNA microarray analysis in Eustoma grandiflorum. Sci Hortic 122:129–133

    Article  CAS  Google Scholar 

  • Kumar M, Saranpää P, Barnett JR, Wilkinson MJ (2009) Juvenile-mature wood transition in pine: correlation between wood properties and candidate gene expression profiles. Euphytica 166:341–355

    Article  CAS  Google Scholar 

  • Kuo JL, Huang HJ, Cheng CM, Chen LJ, Huang BL, Huang LC, Kuo TT (1995) Rejuvenation in vitro- modulation of protein phosphorylation in Sequoia sempervirens. J Plant Physiol 146:333–336

    Article  CAS  Google Scholar 

  • Laitinen RA, Pollanen E, Teeri TH, Elomaa P, Kotilainen M (2007) Transcriptional analysis of petal organogenesis in Gerbera hybrida. Planta 226:347–360

    Article  CAS  PubMed  Google Scholar 

  • Langens-Gerrits M, Kuijpers A, De Klerk G, Croes A (2003) Contribution of explant carbohydrate reserves and sucrose in the medium to bulb growth of lily regenerated on scale segments in vitro. Physiol Plant 117:245–255

    Article  CAS  Google Scholar 

  • Lawson EJ, Poethig RS (1995) Shoot development in plants: time for a change. Trends Genet 11:263–268

    Article  CAS  PubMed  Google Scholar 

  • Lewis JD, Gunderson SI, Mattaj IW (1995) The influence of 5′ and 3′ end structures on pre-mRNA metabolism. J Cell Sci Suppl 19:13–19

    Article  CAS  PubMed  Google Scholar 

  • Li CM, Zhang XZ, Yue WQ, Zhao YB, Zu WF, Wang GP, Chang RF, Shu HR (2006) Dynamics of endogenous polyamines in seedling trees of Pyrus ussuriensis Maxim. × Pyrus bretschneideri Rehd. Acta Hortic 774:89–94

    Google Scholar 

  • Li GJ, Peng F, Zhang L, Shi XZ, Wang ZY (2010a) Cloning and characterization of a SnRK1-encoding gene from Malus hupehensis Rehd. and heterologous expression in tomato. Mol Biol Rep 37:947–954

    Article  CAS  PubMed  Google Scholar 

  • Li H, Freeling M, Lisch D (2010b) Epigenetic reprogramming during vegetative phase change in maize. Proc Natl Acad Sci USA 107:22184–22189

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Hunt AG (1995) A near-upstream element in a plant polyadenylation signal consists of more than six nucleotides. Plant Mol Biol 28:927–34

    Article  CAS  PubMed  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2.- H2O2 and.OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loke JC, Stahlberg EA, Strenski DG, Haas BJ, Wood PC, Li QQ (2005) Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiol 138:1457–1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mogen BD, MacDonald MH, Graybosch R, Hunt AG (1990) Upstream sequences other than AAUAAA are required for efficient messenger RNA 3'-end formation in plants. Plant Cell 2:1261–1272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mogen BD, MacDonald MH, Leggewie G, Hunt AG (1992) Several distinct types of sequence elements are required for efficient mRNA 3' end formation in a pea rbcS gene. Mol Cell Biol 12:5406–5414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray JR, Smith AG, Hackett WP (1991) Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiol 97:343–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murray JR, Smith AG, Hackett WP (1994) Differential dihydroflavonol reductase transcription and anthocyanin pigmentation in the juvenile and mature phases of ivy (Hedera helix L). Planta 194:102–109

    Article  CAS  Google Scholar 

  • Nakata PA, McConn MM (2002) Sequential subtractive approach facilitates identification of differentially expressed genes. Plant Physiol Biochem 40:307–312

    Article  CAS  Google Scholar 

  • Ozolina NV, Kolesnikova EV, Nurminsky VN, Nesterkina IS, Dudareva LV, Tretyakova AV, Salyaev RK (2011) Redox dependence of transport activity of tonoplast proton pumps: Effects of nitric oxide exposure during ontogenesis and under hypoosmotic and hyperosmotic stress. Biochemistry (Moscow) Suppl Ser A Membr Cell Biol 5:258–262

    Article  Google Scholar 

  • Piper FI, Cavieres LA (2010) Gas exchange of juvenile and mature trees of Alnus jorullensis (Betulaceae) at sites with contrasting humidity in the Venezuelan Andes. Ecol Res 25:51–58

    Article  Google Scholar 

  • Poethig RS (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250:923–930

    Article  CAS  PubMed  Google Scholar 

  • Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301:334–346

    Article  CAS  PubMed  Google Scholar 

  • Richter JD (2008) Breaking the code of polyadenylation-induced translation. Cell 132:335–337

    Article  CAS  PubMed  Google Scholar 

  • Rogler CE, Hackett WP (1975) Phase change in Hedera helix: Induction of the mature to juvenile phase change by gibberellin A3. Physiol Plant 34:141–147

    Article  CAS  Google Scholar 

  • Shen Y, Ji G, Haas BJ, Wu X, Zheng J, Reese GJ, Li QQ (2008) Genome level analysis of rice mRNA 3'-end processing signals and alternative polyadenylation. Nucleic Acids Res 36:3150–3161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strable J, Borsuk L, Nettleton D, Schnable PS, Irish EE (2008) Microarray analysis of vegetative phase change in maize. Plant J 56:1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N (2012) Gibberellin is not a regulator of miR156 in rice juvenile-adult phase change. Rice 5:25

    Article  PubMed  Google Scholar 

  • Tavakoli N, Kluge C, Golldack D, Mimura T, Dietz KJ (2001) Reversible redox control of plant vacuolar H+-ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. Plant J 28:51–59

    Article  CAS  PubMed  Google Scholar 

  • Telfer A, Bollman KM, Poethig RS (1997) Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124:645–654

    CAS  PubMed  Google Scholar 

  • Tian B, Graber JH (2012) Signals for pre-mRNA cleavage and polyadenylation. WIREs RNA 3:385–396

    Article  CAS  PubMed  Google Scholar 

  • Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46–57

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Nakano R, Bando M, Shigezane Y, Ikeda K, Namba Y, Kume S, Kitabata T, Mori H, Kubo Y (2012) Isolation of the floral morph-related genes in heterostylous flax (Linum grandiflorum): the genetic polymorphism and the transcriptional and post-transcriptional regulations of the S locus. Plant J 69:317–331

    Article  CAS  PubMed  Google Scholar 

  • Vlasova IA, Tahoe NM, Fan D, Larsson O, Rattenbacher B, Sternjohn JR, Vasdewani J, Karypis G, Reilly CS, Bitterman PB, Bohjanen PR (2008) Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1. Mol Cell 29:263–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker NJ (2002) A technique whose time has come. Science 296:557–559

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS (2011) miRNA control of vegetative phase change in trees. PLoS Genet 7:e1002012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Conway SR, Poethig RS (2011) Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 138:245–249

    Article  CAS  PubMed  Google Scholar 

  • Zeng GJ, Li CM, Zhang XZ, Han ZH, Yang FQ, Gao Y, Chen DM, Zhao YB, Wang Y, Teng YL, Dong WX (2010) Differential proteomic analysis during the vegetative phase change and the floral transition in Malus domestica. Dev Growth Differ 52:635–644

    Article  CAS  PubMed  Google Scholar 

  • Zeng GJ, Li CM, Zhang XZ, Tian Y, Chen DM, Zhao YB, Dong WX (2008) SDS-PAGE analysis of phase change-related proteins in apple (Malus domestica Borkh). Acta Hortic Sin 35:1059–1064

    CAS  Google Scholar 

  • Zhang Q, Wang Y, Zhang XZ, Yin LL, Wu T, Xu XF, Jia WS, Han ZH (2012) Cloning and characterization of MxVHA-c, a vacuolar H+-ATPase subunit C gene related to Fe efficiency from Malus xiaojinensis. Plant Mol Biol Rep 30:1149–1157

    Article  CAS  Google Scholar 

  • Zhang XZ, Zhao YB, Li CM, Chen DM, Wang GP, Chang RF, Shu HR (2007) Potential polyphenol markers of phase change in apple (Malus domestica). J Plant Physiol 164:574–580

    Article  CAS  PubMed  Google Scholar 

  • Zhang XZ, Zhao YB, Wang GP, Chang RF, Li CM, Shu HR (2008) Dynamics of endogenous cytokinins during phase change in Malus domestica Borkh. Acta Hortic 774:29–34

    CAS  Google Scholar 

  • Zhang YG, Cheng JH, Han ZH, Xu XF, Li TZ (2005) Comparison of methods for total RNA isolation from Malus xiaojinensis and cDNA LD-PCR amplification. Biotechnol Bull 4:50–53

    Google Scholar 

  • Zhuo XN (1995) Studies on the breaking dormancy of kyoho grape seeds and the plant endogenous hormones in grape. J Fruit Sci 12:79–83

    Google Scholar 

  • Zimmerman RH (1976) Symposium on juvenility in woody perennials. Acta Hortic 56:301–317

    Google Scholar 

  • Zimmerman RH, Hackett HP, Pharis RP (1985) Hormonal aspects of phase change and precocious flowering. Encyclopedia of Plant Physiology New Series. Springer, Berlin, pp 79–115

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (NSFC) [Grant 31071774].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Hai Han or Xin Zhong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLS 32.5 kb)

Table S2

(XLS 175 kb)

Table S3

XLS 56.5 kb)

Fig. S1

Differential screening of the subtractive cDNA libraries by dot blotting. 244 clones in I and 284 clones in II showed distinct differences (marked by red circles). I: Dot blotting using the cDNA from the juvenile phase as probes; II: Dot blotting using the cDNA from the adult phase as probes. a-l were PCR products of positive clones from juvenile library; m-x were PCR products of positive clones from adult library. The exact radiation intensity ratio of positive dot were showed in Table S1. (JPEG 152 kb)

High resolution image (TIFF 20935 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Yang, F.Q., Cao, X. et al. Differences in Gene Expression and Regulation during Ontogenetic Phase Change in Apple Seedlings. Plant Mol Biol Rep 32, 357–371 (2014). https://doi.org/10.1007/s11105-013-0648-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0648-2

Keywords

Navigation