Skip to main content
Log in

Complete Chloroplast Genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae): Comparative Genomics and Evaluation of Universal Primers for Liliales

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The complete chloroplast genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae, Liliales) was mapped using polymerase chain reaction and the Sanger method. The circular double-stranded DNA was a typical quadripartite structure consisting of two inverted repeated regions (27,397 bp), a small single copy region (18,205 bp), and a large single-copy region (81,646 bp), with a total length of 154,645 bp. The genome consisted of 137 coding genes, including 91 protein-coding genes, 38 distinct tRNA, and 8 rRNA genes. The ycf15 and ycf68 genes had several internal stop codons interpreted as pseudogenes. The inverted repeat (IR) region expanded to part of the rps3 gene in the junction between large single-copy and IRA regions in C. japonica. We designed 785 primers, of which 481 were used to map the entire chloroplast genome of C. japonica. Primers were compared with the complete chloroplast sequence of Smilax china (Smilacaceae) to identify primers that could be used for other Liliales members and whole chloroplast genome sequencing. Of the primers used for C. japonica, 398 could be used with other smaller species within the order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • APG III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki KI (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11(2):93–99

    Article  PubMed  CAS  Google Scholar 

  • Bedbrook JR, Bogorad L (1976) Endonuclease recognition sites mapped on Zea mays chloroplast DNA. Proc Natl Acad Sci 73(12):4309–4313

    Article  PubMed  CAS  Google Scholar 

  • Bedbrook JR, Kolodner R, Bogorad L (1977) Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat. Cell 11(4):739–749

    Article  PubMed  CAS  Google Scholar 

  • Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156(2):847–854

    PubMed  CAS  Google Scholar 

  • Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH et al (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23(2):279–291

    Article  PubMed  CAS  Google Scholar 

  • Chase MW, Fay MF, Devey DS, Maurin O, Rønsted N, Davies TJ et al (2006) Multigene analyses of monocot relationships: a summary. Aliso 22:63–75

    Google Scholar 

  • Chen SC (1980) Chionographis. Flora Reipublicae Popularis Sinicae 14:13–15

    Google Scholar 

  • Chen SC, Tamura MN (2000) Chionographis. Flora of China 24:88

    Google Scholar 

  • Conant GC, Wolfe KH (2008) GenomeVX: simple web-based creation of editable circular chromosome maps. Bioinformatics 2:861–862

    Article  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23(5):238–245

    Article  PubMed  CAS  Google Scholar 

  • Davis JI, Stevenson DW, Petersen G, Seberg O, Campbell LM, Freudenstein JV et al (2004) A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst Bot 29(3):467–510

    Article  Google Scholar 

  • Downie SR, Palmer JD (1992) Restriction site mapping of the chloroplast DNA inverted repeat: a molecular phylogeny of the Asteridae. Ann Mo Bot Gard 266–283

  • Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue CTAB method. Phytochem Bull 19(11)

  • Duvall MR, Clegg MT, Chase MW, Clark WD, Kress WJ, Hills HG et al (1993) Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data. Ann Mo Bot Gard 80(3):607–619

    Article  Google Scholar 

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99(2):175–185

    Article  PubMed  CAS  Google Scholar 

  • Erfani J, Ebadi A, Abdollahi H, Fatahi R (2012) Genetic diversity of some pear cultivars and genotypes using simple sequence repeat (SSR) markers. Plant Mol Biol Rep 30:1065–1072

    Article  CAS  Google Scholar 

  • Fay MF, Chase MW, Rønsted N, Devey DS, Pillon Y, Pires JC et al (2006) Phylogenetics of Liliales: summarized evidence from combined analyses of five plastid and one mitochondrial loci. Aliso 22:559–565

    Google Scholar 

  • FitzSimmons NN, Moritz C, Moore SS (1995) Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Mol Biol Evol 12(3):432–440

    PubMed  CAS  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 1;32 (Web Server issue):W273-9

  • Fuse S, Tamura MN (2000) A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biol 2(4):415–427

    Article  CAS  Google Scholar 

  • Gantt JS, Baldauf SL, Calie PJ, Weeden NF, Palmer JD (1991) Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10(10):3073

    PubMed  CAS  Google Scholar 

  • Givnish TJ, Ames M, McNeal JR, McKain MR, Steele PR, de Pamphilis CW, Leebens-Mack JH (2010) Assembling the tree of the monocotyledons: plastome sequence phylogeny and evolution of Poales 1. Ann Mo Bot Gard 97(4):584–616

    Article  Google Scholar 

  • Goldblatt P (1995) The status of R. Dahlgren’s orders Liliales and Melanthiales. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, Richmond, Surrey, UK, pp 181–200

    Google Scholar 

  • Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22(9):1813–1822

    Article  PubMed  CAS  Google Scholar 

  • Goulding SE, Wolfe KH, Olmstead RG, Morden CW (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet MGG 252(1–2):195–206

    Article  CAS  Google Scholar 

  • Hall T (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hara H (1968) A revision of the genus Chionographis (Liliaceae). J Jpn Bot 43:257–288

    Google Scholar 

  • Harris M, Meyer G, Vandergon J, Vandergon VO (2013) Loss of the acetyl co-A carboxylase (accD) gene in Poales. Plant Mol Biol Rep 31:21–31

    Article  CAS  Google Scholar 

  • Howe CJ, Barbrook AC, Koumandou VL, Nisbet RER, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Phil Trans R Soc Land B 358:99–107

    Article  CAS  Google Scholar 

  • Hutchinson J (1934) The families of flowering plants II: monocotyledons. Macmillan Pub, London

    Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J et al (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci 104(49):19369–19374

    Article  PubMed  CAS  Google Scholar 

  • Karp A, Seberg O, Buiatti M (1996) Molecular techniques in the assessment of botanical diversity. Ann Bot 78:143–149

    Article  CAS  Google Scholar 

  • Khan A, Khan I, Heinze B, Azim MK (2012) The chloroplast genome sequence of date palm (Pheonix dactylifera L. cv. ‘Aseel’). Plant Mol Biol Rep 30:666–678

    Article  CAS  Google Scholar 

  • Kim KJ, Lee HL (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11(4):247–261

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Hong JK, Chase MW, Fay MF, Kim JH (2013) Familial relationships of the monocot order Liliales based on a molecular phylogenetic analysis using four plastid loci: matK, rbcL, atpB and atpF-H. Bot J Linn Soc 172:5–21

    Article  Google Scholar 

  • Kim JS, Kim J-H (2013) Comparative genome analysis and phylogenetic relationship of order Liliales insight from the complete plastid genome sequences of two lilies (Lilium longiflorum and Alstroemeria aurea). Plos One 8(6): e68180

    Google Scholar 

  • Lartillot N, Brinkmann H, Philippe H (2007) Suppression of long-branch attraction artifacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol 7(Suppl 1):S4

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Qi Z, Zhao Y, Fu C, Xiang Q (2012) Complete cpDNA genome sequence of Smilax china and phylogenetic placement of Liliales—influences of gene partitions and taxon sampling. Mol Phylogenet Evol 64:545–562

    Article  PubMed  CAS  Google Scholar 

  • Maki M (1992) Fixation indices and genetic diversity in hermaphroditic and gynodioecious populations of Japanese Chionographis (Liliaceae). Heredity 68:329–336

    Article  Google Scholar 

  • Maki M (1993) Outcrossing and fecundity advantage of females in gynodioecious Chionographis japonica var. kurohimensis (Liliaceae). Am J Bot 80(6):629–634

    Article  Google Scholar 

  • Maki M, Masuda M (1994) Spatial genetic structure within two populations of a self-incompatible perennial, Chionographis japonica var. japonica (Liliaceae). J Plant Res 107(3):283–287

    Article  Google Scholar 

  • Meagher TR, Antonovics JJ (1982) Life history variation in dioecious plant populations: a case study of Chamaelirium luteum. Evolution and genetics of life histories. Springer-Verlag, New York, pp 139–154

    Book  Google Scholar 

  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L et al (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell Online 13(3):645–658

    CAS  Google Scholar 

  • Narayanan V, Mieczkowski PA, Kim HM, Petes TD, Lobachev KS (2006) The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell 125(7):1283–1296

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15(10):1275–1287

    Article  PubMed  CAS  Google Scholar 

  • Petersen G, Seberg O, Davis JI (2012) Phylogeny of the Liliales (Monocotyledons) with special emphasis on data partition congruence and RNA editing. Cladistics. doi:10.1111/j.1096-0031.2012.00427.x

    Google Scholar 

  • Primmer CR, Møller AP, Ellegren H (1996) A wide-range survey of cross-species microsatellite amplification in birds. Mol Ecol 5(3):365–378

    PubMed  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (2005) 4 Chloroplast genomes of plants. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CABI Publishing, London, pp 45–68

    Chapter  Google Scholar 

  • Raubeson L, Peery R, Chumley T, Dziubek C, Fourcade HM, Boore J, Jansen R (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8(1):174

    Article  PubMed  Google Scholar 

  • Rico C, Rico I, Hewitt G (1996) 470 million years of conservation of microsatellite loci among fish species. Proc R Soc Lond Ser B Biol Sci 263(1370):549–557

    Article  CAS  Google Scholar 

  • Rose O, Falush D (1998) A threshold size for microsatellite expansion. Mol Biol Evol 15(5):613–615

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  • Rudall PJ, Stobart KL, Hong WP, Conran JG, Funess CA, Kite GC, Chase MW (2000) Consider the lilies: Systematics of Liliales. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO: Melbourne, Australia, pp 347–357

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33(suppl 2):W686–W689

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45(3):307–315

    Article  PubMed  CAS  Google Scholar 

  • Tamura MN (1998) Melanthiaceae. In: Kubitzki K (ed) The families and genera of vascular plants: monocotyledons vol III. Columbia University Press, New York, NY pp 369–380

  • Tamura MN, Yamashita J, Fuse S, Haraguchi M (2004) Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J Plant Res 117(2):109–120

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum-likelihood, evolutionary distance, and maximum-parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tanaka NY (1985) Variation of sexual system in Chionographis species. Syuseibutugaku-kenkyu 9:11–19 (In Japanese)

    Google Scholar 

  • Tanaka N (2003) New status and combinations for Japanese taxa of Chionographis (Melanthiaceae). Novon 13(2):212–215

    Article  Google Scholar 

  • Tanaka NY, Tanaka N (1977) Chromosome studies in Chionographis (Liliaceae). I. On the holokinetic nature of chromosomes in Chionographis japonica Maxim. Cytol 42:753–763

    Article  Google Scholar 

  • Tanaka NY, Tanaka N (1979) Chromosome studies in Chionographis (Liliaceae): II. Morphological characteristics of the somatic chromosomes of four Japanese members. Cytol 44:935–949

    Article  Google Scholar 

  • Terakami S, Matsumura Y, Kurita K, Kanamori H, Katayose Y, Yamamoto T, Katayama H (2012) Complete sequence of the chloroplast genome from pear (Pyrus pyrifolia): genome structure and comparative analysis. Tree Genet Genomics 8(4):841–854

    Article  Google Scholar 

  • Terrab A, Paun O, Talavera S, Tremetsberger K, Arista M, Stuessy TF (2006) Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. Am J Bot 93(9):1274–1280

    Article  PubMed  CAS  Google Scholar 

  • Thurston MI, Field D (2005) Msatfinder: detection and characterisation of microsatellites. Distributed by the authors at http://www.genomics.ceh.ac.uk/msatfinder/. CEH Oxford, Mansfield Road, Oxford OX1 3SR

  • Vinnersten A, Bremer K (2001) Age and biogeography of major clades in Liliales. Am J Bot 88(9):1695–1703

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci 91(21):9794–9798

    Article  PubMed  CAS  Google Scholar 

  • Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8(1):36

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Schlagenhauf E, Graner A, Close T, Keller B, Stein N (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7(1):275

    Article  PubMed  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci 84(24):9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20(17):3252–3255

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    PubMed  CAS  Google Scholar 

  • Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q et al (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One 5(9):e12762

    Article  PubMed  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E et al (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99(2):193–208

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Li J, Zhao Y, Korban SS, Han Y (2012) Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep 30:539–546

    Article  CAS  Google Scholar 

  • Zomlefer WB (1997) The genera of Melanthiaceae in the southeastern United States. Harv Pap Bot 2:133–177

    Google Scholar 

  • Zomlefer WB, Williams NH, Whitten WM, Judd WS (2001) Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus: evidence from ITS and trnL-F sequence data. Am J Bot 88(9):1657–1669

    Article  PubMed  CAS  Google Scholar 

  • Zomlefer WB, Judd WS, Whitten WM, Williams NH (2006) A synopsis of Melanthiaceae (Liliales) with focus on character evolution in tribe Melanthieae. Aliso 22:566–578

    Google Scholar 

Download references

Acknowledgments

We would like to thank Do Hoang Dang Khoa and Sang-Chul Kim of Gachon University for assistance with the analysis and in collection of Chionographis. This study was supported by the National Research Foundation of Korea (NRF) grant fund (MEST 2010–0029131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Hwan Kim.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Primers used for the sequence mapping of C. japonica, separated by region (LSC, SSC, IR) and named according to the appropriate location within the Chionographis sequence. Primers compared with S. china and those with greater than 80 % similarity are listed along with nucleotide position compared with Chionographis (PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodin, S.S., Kim, J.S. & Kim, JH. Complete Chloroplast Genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae): Comparative Genomics and Evaluation of Universal Primers for Liliales. Plant Mol Biol Rep 31, 1407–1421 (2013). https://doi.org/10.1007/s11105-013-0616-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0616-x

Keywords

Navigation