Skip to main content
Log in

Structure, Evolution, and Expression of the β-Galactosidase Gene Family in Brassica campestris ssp. chinensis

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Plant β-galactosidases (EC 3.2.1.23; BGAL) are associated with cell wall biogenesis and modification. β-Galactosidase isozymes are encoded by the BGAL multigene family in plants. In this study, 16 BcBGAL genes from the Brassica campestris ssp. chinensis (syn. Brassica rapa ssp. chinensis) genome were investigated and compared with those from Arabidopsis thaliana. A comprehensive genome-wide analysis of BcBGAL genes in B. campestris is presented, including their phylogeny, genome localization, gene structure, and expression patterns. Phylogenetic analysis of 16 BcBGAL and 17 AtBGAL proteins from Arabidopsis indicate that the BcBGALs clustered into four major groups, such that genes within the same group had similar exon–intron structures. The 5′-upstream region of BcBGAL genes contained a group of putative cis-acting elements related to stress and plant hormone response. Expression analysis of BcBGAL genes using quantitative reverse transcription–polymerase chain reaction demonstrates that all BcBGAL transcripts could be detected in at least one type of tissue. Some of these transcripts exhibited tissue-specific expression patterns. Our data provided insights on the evolution of the BGAL gene family and a useful reference for further functional analysis in B. campestris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn YO, Zheng M, Bevan DR, Esen A, Shiu SH, Benson J, Peng HP, Miller JT, Cheng CL, Poulton JE, Shih MC (2007) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35. Phytochemistry 68:1510–1520

    Article  PubMed  CAS  Google Scholar 

  • Akasaki M, Suzuki M, Funakoshi I, Yamashina I (1976) Characterization of β-galactosidase from a special strain of Aspergillus oryzae. J Biochem 80:1195–1200

    PubMed  CAS  Google Scholar 

  • Ali ZM, Armugam S, Lazan H (1995) β-Galactosidase and its significance in ripening mango fruit. Phytochemistry 38:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Andrews PK, Li SL (1994) Partial purification and characterization of β-galactosidase from sweet cherry, a nonclimacteric fruit. J Agr Food Chem 42:2177–2182

    Article  CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  PubMed  CAS  Google Scholar 

  • Campbell JH, Lengyel JA, Langridg J (1973) Evolution of a second gene for β-galactosidase in Escherichia coli. Proc Nat Acad Sci USA 70:1841–1845

    Article  PubMed  CAS  Google Scholar 

  • Curtiss J, Turley RB, Stewart JM, Zhang JF (2012) Identification of differentially expressed genes in semigametic pima cotton by differential display. Plant Mol Biol Rep 30:643–653

    Article  CAS  Google Scholar 

  • Dwevedi A, Kayastha AM (2009) Optimal immobilization of beta-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresource Technol 100:2667–2675

    Article  CAS  Google Scholar 

  • Eneas-filho J, Suderio FB, Gomes-filho E, Prisco JT (2000) Multiple forms of cotyledonary β-galactosidases from Vigna unguiculata quiescent seeds. Rev Bras Bot 23:69–76

    Article  CAS  Google Scholar 

  • Giannakouros T, Karagiorgos A, Simos G (1991) Expression of β-galactosidase multiple forms during barley (Hordeum vulgare) seed germination. Separation and characterization of enzyme isoforms. Physiol Plantarum 82:413–418

    Article  CAS  Google Scholar 

  • Henrissat B (1998) Glycosidase families. Biochem Soc T 26:153–156

    CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Husain Q (2010) beta Galactosidases and their potential applications: a review. Crit Rev Biotechnol 30:41–62

    Article  PubMed  CAS  Google Scholar 

  • Kang IK, Suh SG, Gross KC, Byun JK (1994) N-terminal amino acid sequence of persimmon fruit β-galactosidase. Plant Physiol 105:975–979

    Article  PubMed  CAS  Google Scholar 

  • Kotake T, Dina S, Konishi T, Kaneko S, Igarashi K, Samejima M, Watanabe Y, Kimura K, Tsumuraya Y (2005) Molecular cloning of a beta-galactosidase from radish that specifically hydrolyzes β-(1→3)- andβ-(1→6)-galactosyl residues of arabinogalactan protein. Plant Physiol 138:1563–1576

    Article  PubMed  CAS  Google Scholar 

  • Lazan H, Ng SY, Goh LY, Ali ZM (2004) Papaya beta-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant Physiol and Bioch 42:847–853

    Article  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Qiu L, Huang L, Cao JS (2012a) BcJMJ30, the gene encoding jmjC domain-containing histone demethylase is associated with pollen development and fertilization in Brassica campestris ssp chinensis. Plant Mol Bio Rep 30:529–538

    Article  CAS  Google Scholar 

  • Li YF, Qiu L, Huang L, Cao JS (2012b) Molecular cloning and characterization of BcMF22, a novel gene related to pollen development and fertilization in Brassica campestris ssp chinensis. Plant Mol Bio Rep 30:860–866

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Moctezuma E, Smith DL, Gross KC (2003) Antisense suppression of a beta-galactosidase gene (TBG6) in tomato increases fruit cracking. J Exp Bot 54:2025–2033

    Article  PubMed  CAS  Google Scholar 

  • O'Donoghue EM, Somerfield SD, Watson LM, Brummell DA, Hunter DA (2009) Galactose metabolism in cell walls of opening and senescing petunia petals. Planta 229:709–721

    Article  PubMed  Google Scholar 

  • Panesar R, Panesar PS, Singh RS, Kennedy JF (2011) Hydrolysis of milk lactose in a packed bed reactor system using immobilized yeast cells. J Chem Technol Biot 86:42–46

    Article  CAS  Google Scholar 

  • Panesar R, Panesar PS, Singh RS, Kennedy JF, Bera MB (2007) Production of lactose-hydrolyzed milk using ethanol permeabilized yeast cells. Food Chem 101:786–790

    Article  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Puri M, Gupta S, Pahuja P, Kaur A, Kanwar JR, Kennedy JF (2010) Cell disruption optimization and covalent immobilization of beta-d-galactosidase from Kluyveromyces marxianus YW-1 for lactose hydrolysis in milk. Appl Biochem and Biotech 160:98–108

    Article  CAS  Google Scholar 

  • Ranwala AP, Suematsu C, Masuda H (1992) The role of β-galactosidase in the modification of cell wall components during muskmelon fruit ripening. Plant Physiol 100:1318–1325

    Article  PubMed  CAS  Google Scholar 

  • Ross GS, Redgwell RJ, Macrae EA (1993) Kiwifruit β-galactosidase: isolation and activity against specific fruit cell-wall polysaccharides. Planta 189:499–506

    Article  CAS  Google Scholar 

  • Ross GS, Wegrzyn T, MacRae EA, Redgwell RJ (1994) Apple β-galactosidase activity against cell wall polysaccharides and characterization of a related cDNA clone. Plant Physiol 106:521–528

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Smith DL, Gross KC (2000) A family of at least seven beta-galactosidase genes is expressed during tomato fruit development. Plant Physiol 123:1173–1183

    Article  PubMed  CAS  Google Scholar 

  • Smithers GW (2008) Whey and whey proteins—from 'gutter-to-gold'. Int Dairy J 18:695–704

    Article  CAS  Google Scholar 

  • Tanthanuch W, Chantarangsee M, Maneesan J, Ketudat-Cairns J (2008) Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.). BMC Plant Biol 8:1–17

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wang XX, Chen J, Wang B, Liu LJ, Jiang H, Tang P (2012) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of anthracnose-resistant ramie cultivar. Plant Mol Biol Rep 30:547–555

    Article  CAS  Google Scholar 

  • Wu KH, Chen Q, Xiao SQ, Tan H, Wang QF, Zhao Y, Wu WW, Li KZ, Yu YX, Chen LM (2013) cDNA microarray analysis of transcriptional responses to foliar methanol application on tamba black soybean plants grown on acidic soil. Plant Mol Biol Rep. doi:10.1007/s11105-013-0558-3

    Google Scholar 

  • Zhang AH, Chen QZ, Huang L, Qiu L, Cao JS (2011) Cloning and expression of an anther-abundant polygalacturonase gene BcMF17 from Brassica campestris ssp chinensis. Plant Mol Bio Rep 29:943–951

    Article  CAS  Google Scholar 

  • Zhang AH, Qiu L, Huang L, Yu XL, Lu G, Cao JS (2012) Isolation and characterization of an anther-specific polygalacturonase gene BcMF16 in Brassica campestris ssp. chinensis. Plant Mol Bio Rep 30:330–338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Program on Key Basic Research Projects (No. 2012CB113900), the Natural Science Foundation of China (No. 31071805), and the Key Sci-Technology Project of Zhejiang Province (No. 2010C12004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashu Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 546 kb)

ESM 2

(DOC 71 kb)

ESM 3

(DOC 68 kb)

ESM 4

(DOC 78 kb)

ESM 5

(DOC 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Gao, M., Lv, M. et al. Structure, Evolution, and Expression of the β-Galactosidase Gene Family in Brassica campestris ssp. chinensis . Plant Mol Biol Rep 31, 1249–1260 (2013). https://doi.org/10.1007/s11105-013-0585-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0585-0

Keywords

Navigation