Skip to main content
Log in

Specific Downregulation of the Bacterial-Type PEPC Gene by Artificial MicroRNA Improves Salt Tolerance in Arabidopsis

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Although phosphoenolpyruvate carboxylases (PEPC) are reported to be involved in fatty acid accumulation, nitrogen assimilation, and salt and drought stresses, knowledge on the function of PEPC genes is still limited, particularly on the bacterial-type PEPC gene. To investigate the physiological functionality of Atppc4, an Arabidopsis bacterial-type PEPC gene, Atppc4, was specifically suppressed by artificial microRNA (amiRNA) in Arabidopsis. Transgenic plants with constitutively expressed Atppc4-amiRNA exhibited substantially decreased accumulation of Atppc4 transcripts, whereas other three plant-type PEPC genes, Atppc1, Atppc2 and Atppc3, were significantly upregulated in roots. The PEPC activity was improved about 5.1 times in roots of Atppc4-amiRNA transgenic lines. This result indicates that transcription of bacterial-type and plant-type PEPC genes in plants is interacted with each other in plants. The bacterial-type PEPC genes, Atppc4, may play an important role in modulating the transcription of plant-type PEPC genes. The effects of Atppc4 on seed lipid content and fatty acid composition were not detected in this research. This indicated that Atppc4 might be independent of plant lipid accumulation. However, the root development was found to be related with Atppc4. Root elongation of transgenic plants was significantly inhibited. The inhibition can be partially relieved by salt treatment. The results showed that specific downregulation of the bacterial-type PEPC gene, Atppc4, by artificial microRNA improved salt tolerance in Arabidopsis. The improved salt tolerance may be related with the improved PEPC activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abid G, Sassi K, Muhovski Y, Jacquemin JM, Mingeot D, Tarchoun N, Baudoin JP (2011) Identification and analysis of differentially expressed genes during seed development using suppression subtractive hybridization (SSH) in Phaseolus vulgaris. Plant Mol Biol Rep. doi:10.1007/s11105-011-0381-7

  • Agueci F, Rutten T, Demidov D, Houben A (2011) Arabidopsis AtNek2 kinase is essential and associates with microtubules. Plant Mol Biol Rep. doi:10.1007/s11105-011-0342-1

  • Aivalakis G, Dimou M, Flemetakis E, Plati F, Katinakis P, Drossopoulos JB (2004) Immunolocalization of carbonic anhydrase and phosphoenolpyruvate carboxylase in developing seeds of Medicago sativa. Plant Physiol Biochem 42:181–186

    Article  PubMed  CAS  Google Scholar 

  • Alvarez R, Gandullo J, Feria AB, Dever LV, Vidal J, Echevarria C (2011) Characterisation of seeds of a C-4 phosphoenolpyruvate carboxylase-deficient mutant of Amaranthus edulis. Plant Biology 13:16–21

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  • Blonde JD, Plaxton WC (2003) Structural and kinetic properties of high and low molecular mass phosphoenolpyruvate carboxylase isoforms from the endosperm developing castor oilseeds. J Biol Chem 278:11867–11873

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen JQ, Lang CX, Hu ZH, Liu ZH, Huang RZ (1999) Antisense PEP gene regulates to ratio of protein and lipid content in Brassica napus seeds. J Agric Biotechnol 7(4):316–320 (in Chinese with English abstract)

    Google Scholar 

  • Chen CF, Ridzon DA, Broomer AJ, Zhou ZH, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research 33:e179

  • Chen M, Tang YL, Zhang JM, Yang MF, Xu YN (2010) RNA Interference-based suppression of phosphoenolpyruvate carboxylase results in susceptibility of rapeseed to osmotic stress. J Integr Plant Biol 52:585–592

    Article  PubMed  CAS  Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Ann Rev Plant Physiol Plant Mol Biol 47:273–298

    Article  CAS  Google Scholar 

  • Duan CG, Wang CH, Fang RX, Guo HS (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82(22):11084–11095

    Article  PubMed  CAS  Google Scholar 

  • Gennidakis S, Rao S, Greenham K, Uhrig RG, O'Leary B, Snedden WA, Lu C, Plaxton WC (2007) Bacterial- and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric class-2 PEPC complex of developing castor oil seeds. Plant J 52:839–849

    Article  PubMed  CAS  Google Scholar 

  • Hatch MD, Oliver IR (1978) Activation and inactivation of phosphoenolpyruvate carboxylase in leaf extracts from C4 species. Aust J Plant Physiol 5:571–580

    Article  CAS  Google Scholar 

  • Izui K, Matsumura H, Furumoto T, Kai Y (2004) Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol 55:69–84

    Article  PubMed  CAS  Google Scholar 

  • Liu YL, Burch-Smith T, Schiff M, Feng SH, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279:2101–2108

    Article  PubMed  CAS  Google Scholar 

  • Liu XM, Anderson JM, Pijut PM (2010) Cloning and characterization of Prunus serotina AGAMOUS, a putative flower homeotic gene. Plant Mol Biol Rep 28:193–203

    Article  CAS  Google Scholar 

  • Ma C, Ma BG, He J, Hao QN, Lu X, Wang L (2011) Regulation of carotenoid content in tomato by silencing of lycopene β/ε-cyclase genes. Plant Mol Biol Rep 29:117–124

    Article  CAS  Google Scholar 

  • Magnin NC, Cooley BA, Reiskind JB, Bowes G (1997) Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol 115:1681–1689

    PubMed  CAS  Google Scholar 

  • Mamedov TG, Moellering ER, Chollet R (2005) Identification and expression analysis of two inorganic C- and N-responsive genes encoding novel and distinct molecular forms of eukaryotic phosphoenolpyruvate carboxylase in the green microalga Chlamydomonas reinhardtii. Plant J 42:832–843

    Article  PubMed  CAS  Google Scholar 

  • Masumoto C, Miyazawa SI, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M (2010) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA 107:5226–5231

    Article  PubMed  CAS  Google Scholar 

  • Miyao M, Fukayama H (2003) Metabolic consequences of overproduction of phosphoenolpyruvate carboxylase in C-3 plants. Arch Biochem Biophys 414:197–203

    Article  PubMed  CAS  Google Scholar 

  • O'Leary B, Rao SK, Kim J, Plaxton WC (2009) Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants. J Biol Chem 284:24797–24805

    Article  PubMed  Google Scholar 

  • O'Leary B, Park J, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436:15–34

    Article  PubMed  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  CAS  Google Scholar 

  • Park W, Zhai JX, Lee JY (2009) Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes. Plant Cell Rep 28:469–480

    Article  PubMed  CAS  Google Scholar 

  • Rivoal J, Trzos S, Gage DA, Plaxton WC, Turpin DH (2001) Two unrelated phosphoenolpyruvate carboxylase polypeptides physically interact in the high molecular mass isoforms of this enzyme in the unicellular green alga Selenastrum minutum. J Biol Chem 276:12588–12597

    Article  PubMed  CAS  Google Scholar 

  • Sanchez R, Cejudo FJ (2003) Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol 132:949–957

    Article  PubMed  CAS  Google Scholar 

  • Sanchez R, Flores A, Cejudo F (2006) Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta 223:901–909

    Article  PubMed  CAS  Google Scholar 

  • Sangwan RS, Singh N, Plaxton WC (1992) Phosphoenolpyruvate carboxylase activity and concentration in the endosperm of developing and germinating castor-oil seeds. Plant Physiol 99:445–449

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Sebei K, Ouerghi Z, Kallel H, Boukhchina S (2006) Evolution of phosphoenolpyruvate carboxylase activity and lipid content during seed maturation of two spring rapeseed cultivars (Brassica napus L.). Comptes Rendus Biologies 329:719–725

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana. Plant J 32:419–431

    Article  PubMed  CAS  Google Scholar 

  • Uhrig RG, O'Leary B, Spang HE, MacDonald JA, She YM, Plaxton WC (2008) Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds. Plant Physiol 146:1346–1357

    Article  PubMed  CAS  Google Scholar 

  • Varkonyi-Gasic E, Wu RM, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  Google Scholar 

  • Vidal J, Chollet R (1997) Regulatory phosphorylation of C-4 PEP carboxylase. Trends Plant Sci 2:230–237

    Article  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Jiang J, Li TF, Li HY, Wang C, Wang YC, Liu GF (2011) Influence of nitrogen, phosphorus, and potassium fertilization on flowering and expression of flowering-associated genes in white Birch (Betula platyphylla Suk.). Plant Mol Biol Rep 29:794–801

    Article  CAS  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3(3):e1829

    Article  PubMed  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Zhejiang Province, China (Y305251 and Y306145) and the National Natural Science Foundation of China (No. 30430450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhai Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Liu, R., Wu, G. et al. Specific Downregulation of the Bacterial-Type PEPC Gene by Artificial MicroRNA Improves Salt Tolerance in Arabidopsis . Plant Mol Biol Rep 30, 1080–1087 (2012). https://doi.org/10.1007/s11105-012-0418-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0418-6

Keywords

Navigation