Skip to main content
Log in

Development and Evaluation of Intron and Insertion–Deletion Markers for Gossypium barbadense

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

A total of 588 Gossypium barbadense coding sequences (CDSs) from nucleotide databases were selected for marker development. After selection, 125 CDSs were used to design 126 markers, including 39 intron polymorphisms (GbIPs) and 87 insertion–deletion polymorphisms (GbIDPs). These markers were evaluated by analyzing the genetic diversity of 66 tetraploid cotton accessions including 56 G. barbadense accessions and 10 Gossypium hirsutum accessions. The amplification efficiencies of the GbIPs and GbIDPs were 0.560 and 0.489 for polymorphism information content, 0.744 and 0.690 for effective multiplex ratio (E), 0.653 and 0.438 for qualitative of nature of data, and 0.272 and 0.148 for effective marker index. Principal coordinate analysis showed profound differences between G. hirsutum and G. barbadense accessions. In addition, most of the G. barbadense accessions of Xinjiang, China were clearly different from foreign and other Chinese G. barbadense accessions. The 126 markers were also evaluated for their ability to enrich genetic maps, and 16 polymorphic loci were mapped on nine chromosomes with six loci on A subgenome and 10 loci on D subgenome. The mapping efficiencies of GbIPs and GbIDPs primers were 15.38% and 11.49%, respectively. This study well proves that GbIPs and GbIDPs can be successfully applied to the analysis of genetic diversity and construction of genetic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560. doi:10.1016/j.tplants.2003.09.010

    Article  PubMed  CAS  Google Scholar 

  • Ashkani S, Rafii MY, Rusli I et al. (2011) SSRs for marker-assisted selection for blast resistance in rice (Oryza sativa L.). Plant Mol Biol Rep. doi: 10.1007/s11105-011-0315-4

  • Baraket G, Chatti K, Saddoud O et al (2011) Comparative assessment of SSR and AFLP markers for evaluation of genetic diversity and conservation of fig, Ficus carica L., genetic resources in Tunisia. Plant Mol Biol Rep 29:171–184. doi:10.1007/s11105-010-0217-x

    Article  Google Scholar 

  • Bhattramkki D, Dolan M, Hanafey M et al (2002) Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48:539–547. doi:10.1023/A:1014841612043

    Article  Google Scholar 

  • Bourguiba H, Krichen L, Audergon JM et al (2010) Impact of mapped SSR markers on the genetic diversity of Apricot (Prunus armeniaca L.) in Tunisia. Plant Mol Biol Rep 28:578–587. doi:10.1007/s11105-010-0189-x

    Article  Google Scholar 

  • Bruce A (2008) Molecular biology of the cell. Garland Science, New York, pp 10–13

    Google Scholar 

  • Choi HK, Kim D, Uhm T et al (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502. doi:10.1534/genetics.166.3.1463

    Article  PubMed  CAS  Google Scholar 

  • Cruz VMV, Luhman R, Marek LF et al (2007) Characterization of flowering time and SSR marker analysis of spring and winter type Brassica napus L. germplasm. Euphytica 153:43–57. doi:10.1007/s10681-006-9233-1

    Article  CAS  Google Scholar 

  • Fu Y, Wen TJ, Ronin YI et al (2006) Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics 174:1671–1683. doi:10.1534/genetics.106.060376

    Article  PubMed  CAS  Google Scholar 

  • Kakani RK, Singh SK, Pancholy A et al (2011) Assessment of genetic diversity in Trigonella foenum-graecum based on nuclear ribosomal DNA, internal transcribed spacer and RAPD analysis. Plant Mol Biol Rep 29:315–323. doi:10.1007/s11105-010-0233-x

    Article  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugen 12:172–175. doi:10.1111/j.1469-1809.1943.tb02321.x

    Article  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461. doi:10.1007/s001220100570

    Article  CAS  Google Scholar 

  • Li W, Ni W, Lin ZX et al (2008) Genetic diversity analysis of sea-island cotton cultivars using SRAP markers. Acta Agro Sin 34:893–898

    Article  CAS  Google Scholar 

  • Mehetre SS, Aher AR, Gawande VL et al (2003) Induced polyploidy in Gossypium: a tool to overcome interspecific incompatibility of cultivated tetraploid and diploid cottons. Curr Sci 84:1510–1512

    Google Scholar 

  • Meng X, Li F, Liu C et al (2010) Isolation and characterization of an ERF transcription factor gene from cotton (Gossypium barbadense L.). Plant Mol Biol Rep 28:176–183. doi:10.1007/s11105-009-0136-x

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of genetic diversity in subdivided population. Proc Nat Acad Sci USA 70:3321–3323

    Google Scholar 

  • Rune A, Sigbjørn L, Bjørn H et al (2010) Targeted SNP discovery in Atlantic salmon (Salmo salar) genes using a 3′UTR- primed SNP detection approach. BMC Genomics 11:706. doi:10.1186/1471-2164-11-706

    Article  Google Scholar 

  • Sharma SS, Negi MS, Sinha P et al (2011) Assessment of genetic diversity of biodiesel species Pongamia pinnata accessions using AFLP and three endonuclease-AFLP. Plant Mol Biol Rep 29:12–18. doi:10.1007/s11105-010-0204-2

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package, Join Map. Plant J 3:739–744. doi:10.1111/j.1365-313X.1993.00739.x

    Article  CAS  Google Scholar 

  • Tanya P, Taeprayoon P, Hadkam Y et al (2011) Genetic diversity among Jatropha and Jatropha-related species based on ISSR markers. Plant Mol Biol Rep 29:252–264. doi:10.1007/s11105-010-0220-2

    Article  Google Scholar 

  • Uzun A, Yesiloglu T, Polat I et al (2011) Evaluation of genetic diversity in lemons and some of their relatives based on SRAP and SSR markers. Plant Mol Biol Rep 29:693–701. doi:10.1007/s11105-010-0277-y

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers: features and applications. Trends Bio technol 23:48–55. doi:10.1016/j.tibtech.2004.11.005

    Article  CAS  Google Scholar 

  • Varshney RK, Chabane K, Hendre PS et al (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649. doi:10.1016/j.plantsci.2007.08.010

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart, software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  PubMed  CAS  Google Scholar 

  • Wang SM (1996) The level and strategy of the world cotton breeding. Cotton Sci 8:1–9

    Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562. doi:10.1038/nature01262

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Yuan DJ, Liang SG et al (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12:15. doi:10.1186/1471-2164-12-15

    Article  PubMed  CAS  Google Scholar 

  • Zhang PP, Wang XQ, Yu Y et al (2009) Isolation, characterization, and mapping of genomic microsatellite markers for the first time in sea-island cotton (Gossypium barbadense). Acta Agro Sin 35:1013–1020

    CAS  Google Scholar 

  • Zheng YL (2005) Fundamental molecular biology. Advanced education press, pp. 63–65

  • Zheng J, Zhang ZS, Chen L et al (2008) IT-ISJ marker and its application in construction of upland cotton linkage map. Sci Agri Sin 41:2241–2248

    CAS  Google Scholar 

  • Zou M, Xia Z, Ling P et al (2011) Mining EST-derived SSR markers to assess genetic diversity in Cassava (Manihot esculenta Crantz). Plant Mol Biol Rep. doi:10.1007/s11105-011-0299-0

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (No. 30871559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxu Lin.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

PDF 108 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Ren, G., Li, X. et al. Development and Evaluation of Intron and Insertion–Deletion Markers for Gossypium barbadense . Plant Mol Biol Rep 30, 605–613 (2012). https://doi.org/10.1007/s11105-011-0369-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0369-3

Keywords

Navigation