Skip to main content
Log in

Levels of MeLEA3, a cDNA Sequence Coding for an Atypical Late Embryogenesis Abundant Protein in Cassava, Increase Under In Vitro Salt Stress Treatment

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta Crantz) is a tropical food crop that is well adapted to critical climate and soil conditions, including drought, one of the most serious abiotic stresses that limit crop production in agriculture. Expression of late embryogenesis abundant (LEA) proteins is involved in acquisition of tolerance to drought, cold and high salinity in many different organisms. Here, we report on the characterization of a cassava MeLEA3 cDNA sequence and its deduced amino acid sequence. MeLEA3 protein was deduced from a full-length cDNA sequence of 664 bp with a 285-bp open reading frame, consisting of 94 amino acid residues, with a calculated molecular weight of 10 kDa and a theoretical isoelectric point of 9.66. The most abundant amino acid found in MeLEA3 protein was alanine (18.09%), followed by lysine (9.57%) and serine (9.57%). A search for conserved domain revealed that MeLEA3 belongs to Pfam family LEA3, PF03242. Furthermore, Kyte–Doolittle algorithm and MitoProt II software analyses showed that MeLEA3 is a hydrophobic atypical LEA protein predicted to be exported to mitochondria. In addition, semi-quantitative RT-PCR assays showed that accumulation of MeLEA3 transcripts is increased in leaves treated with sodium chloride, indicating a potential role in salt stress response. Our results also revealed no introns within the MeLEA3 genomic sequence. This is the first study on characterization of a LEA sequence in cassava that can contribute to understanding molecular mechanisms involved in resistance of this crop to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Altschul SF, Madden TL, Shaffer AA, Zhang J, Zangh Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Babu RC, Zhang J, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Baker J, denSteele C, Dure L III (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11:277–291

    Article  CAS  Google Scholar 

  • Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL (2000) The Pfam protein families database. Nucleic Acids Res 28:263–266

    Article  PubMed  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Boucher V, Buitink J, Lin X, Boudet J, Hoekstra FA, Hundertmark M, Renard D, Leprince O (2010) MtPM25 is an atypical hydrophobic late embryogenesis abundant protein that dissociates cold and desiccation-aggregated proteins. Plant Cell Environ 33:418–430

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) Simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  PubMed  CAS  Google Scholar 

  • Costantini S, Colonna G, Facchiano AM (2006) Amino acid propensities for secondary structures are influenced by the protein structural class. Biochem Biophys Res Commun 342:441–451

    Article  PubMed  CAS  Google Scholar 

  • de Souza CRB, Carvalho LJCB, Cascardo JCM (2004) Comparative gene expression study to identify genes possibly related to storage root formation in cassava. Protein Pept Lett 11:577–582

    Article  PubMed  Google Scholar 

  • de Souza CRB, Carvalho LJCB, de Almeida ERP, Gander ES (2006) A cDNA sequence coding for a glutamic acid-rich protein is differentially expressed in cassava storage roots. Protein Pept Lett 13:653–657

    Article  PubMed  Google Scholar 

  • Dogan RI, Getoor L, Wilbur WJ, Mount SM (2007) SplicePort an interactive splice-site analysis tool. Nucleic Acids Res 35:285–291

    Article  Google Scholar 

  • Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  PubMed  CAS  Google Scholar 

  • Dure L III, Crouch M, Harada J, Ho T-HD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  Google Scholar 

  • FAOSTAT (2003) FAO Statistical Databases-agriculture. http://faostat.fao.org/. Accessed 23 May 2010

  • Federspiel N (2000) Deciphering a weed. Genomic sequencing of Arabidopsis. Plant Physiol 124:1456–1459

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Galau GA, Hughes DW, Dure L III (1986) Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol 7:155–170

    Article  CAS  Google Scholar 

  • Galau GA, Helen YC, Hughes DW (1993) Cotton fea5 and fea74 encode atypical late embryogenesis-abundant proteins. Plant Physiol 101:695–696

    Article  PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    Article  PubMed  CAS  Google Scholar 

  • George S, Usha B, Parida A (2009) Isolation and characterization of an atypical LEA protein coding cDNA and its promoter from drought-tolerant plant Prosopis juliflora. Appl Biochem Biotechnol 157:244–253

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Tisi L, Basran A, Browne J, Burnell A, Zurdo J, Tunnacliffe A (2003) Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278:12977–12984

    Article  PubMed  CAS  Google Scholar 

  • Grelet J, Benamar A, Teyssier E, Avelange-Macherel M-H, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137:157–167

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339

    Article  CAS  Google Scholar 

  • He JX, Fu JR (1996) Research progress in Lea proteins of seeds. Plant Physiol Commun 32:241–246

    CAS  Google Scholar 

  • Hong-Bo S, Zong-Suo L, Ming-An S (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf, B Biointerfaces 45:131–135

    Article  Google Scholar 

  • Hou XW, Guo Y (1998) Ubiquitin and response to plant stress. Plant Physiol Commun 34:474–478

    CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:1–22

    Article  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dunsumuir P, Bedbrook J (1985) High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J 4:2411–2418

    PubMed  CAS  Google Scholar 

  • Kim H-S, Lee JH, Kim JJ, Kim C-H, Jun S-S, Hong Y-N (2005) Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344:115–123

    Article  PubMed  CAS  Google Scholar 

  • Kovacs DS, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Krüger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069

    Article  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Li M-J, Wang X-J, Su L, Bi Y-P, Wan S-B (2010) Characterization of five putative acyl carrier protein (ACP) isoforms from developing seeds of Arachis hypogaea L. Plant Mol Biol Rep 28:365–372

    Article  CAS  Google Scholar 

  • Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA, Kim R, Liu L, Hernandez A, Dixon AG, Ingelbrecht IL (2007) Characterization of an 18, 166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618

    Article  PubMed  CAS  Google Scholar 

  • Meng C-M, Zhang T-Z, Guo W-Z (2009) Molecular cloning and characterization of a novel Gossypium hirsutum L. bHLH gene in response to ABA and drought stresses. Plant Mol Biol Rep 27:381–387

    Article  CAS  Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Okawa K, Kakizaki T, Inaba T (2008) Evaluation of the protective activities of a late embryogenesis abundant (LEA) related protein, Cor15am, during various stresses in vitro. Biosci Biotechnol Biochem 72:1642–1645

    Article  PubMed  CAS  Google Scholar 

  • Naot D, Ben-Hayyim G, Eshdat Y, Holland D (1995) Drought, heat and salt stress induce the expression of a citrus homologue of an atypical late-embryogenesis Lea5 gene. Plant Mol Biol 27:619–622

    Article  PubMed  CAS  Google Scholar 

  • Nelsen NS, Marcotte WR Jr (2000) A wheat group 1 Lea intron enhances β-glucuronidase gene expression in cereal cells. J Plant Physiol 157:677–684

    CAS  Google Scholar 

  • Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 6:122–130

    PubMed  CAS  Google Scholar 

  • Oztur ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  PubMed  Google Scholar 

  • Roberts JK, DeSimone NA, Lingle WL, Dure L III (1993) Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryos. Plant Cell 5:769–780

    Article  PubMed  CAS  Google Scholar 

  • Rose AB (2008) Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol 326:277–290

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20, 000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7(1):66

    Article  PubMed  Google Scholar 

  • Samadder P, Sivamani E, Lu J, Li X, Qu R (2008) Transcriptional and post-transcriptional enhancement of gene expression by the 5’UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genomics 279:429–439

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from Citrus, which confers in vitro dehydration to freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957

    Article  PubMed  CAS  Google Scholar 

  • Shih MD, Lin SC, Hsieh JS, Tsou CH, Chow TY, Lin TP, Hsing YI (2004) Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Plant Mol Biol 56:689–703

    Article  PubMed  CAS  Google Scholar 

  • Soulages JL, Kim KM, Walters C, Cushman JC (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol 128:822–832

    Article  PubMed  CAS  Google Scholar 

  • Swire-Clark GA, Marcotte WR (1999) The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol 39:117–128

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macharel M-H, Macharel D (2007) Structure and function of a mitochondrial late embyogenesis abundant protein revealed by desiccation. Plant Cell 19:1580–1589

    Article  PubMed  CAS  Google Scholar 

  • Wang X-S, Zhu H-B, Jin G-L, Liu H-L, Wu W-R, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

    Article  CAS  Google Scholar 

  • Wang L, Li X, Chen S, Liu G (2009) Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3. Biotechnol Lett 31:313–319

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Wang Y, Diao G, Jiang J, Yang C (2010) Isolation and characterization of expressed sequence tags (ESTs) from cambium tissue of birch (Betula platyphylla Suk). Plant Mol Biol Rep 28:438–449

    Article  Google Scholar 

  • Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform 4:1–19

    Article  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  PubMed  CAS  Google Scholar 

  • Zegzouti H, Jones B, Marty C, Lelièvre JM, Latché A, Pech JC, Bouzayen M (1997) ER5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol Biol 35:847–854

    Article  PubMed  CAS  Google Scholar 

  • Zhang JF, Deng XP, Mu XQ (2002) Plant aquaporin. Plant Physiol Commun 38:88–91

    CAS  Google Scholar 

  • Zhang H, Hu Y, Wang C, Ji W (2010) Gene expression in wheat induced by inoculation with Puccinia striiformis West. Plant Mol Biol Rep. doi:10.1007/s11105-010-0245-6

    Google Scholar 

  • Zhuang Y, Ren G, He C, Li X, Meng Q, Zhu C, Wang R, Zhang J (2010) Cloning and characterization of a maize cDNA encoding glutamate decarboxylase. Plant Mol Biol Rep 28:620–626

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundação de Apoio à Pesquisa do Estado do Pará (FAPESPA)/SEDECT-PA and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. The authors thank Marco Antonio Agostini for the help in the image analysis of RT-PCR assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Regina Batista de Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Nazaré Monteiro Costa, C., Brígida, A.B.S., do Nascimento Borges, B. et al. Levels of MeLEA3, a cDNA Sequence Coding for an Atypical Late Embryogenesis Abundant Protein in Cassava, Increase Under In Vitro Salt Stress Treatment. Plant Mol Biol Rep 29, 997–1005 (2011). https://doi.org/10.1007/s11105-011-0292-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0292-7

Keywords

Navigation