Skip to main content
Log in

Genomic characterization of natural and somaclonal variations in bananas (Musa spp.)

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Unexpected variations can occur during natural and in vitro propagation of bananas (banana and plantain) to generate off-types. The molecular basis of such variations is not well-understood. This study aimed to characterize the functions of genomic regions varying within clones grown naturally or in vitro. Fifty-four simple sequence repeat (SSR) markers and six primer combinations of EcoR I/Msp I-amplified fragment length polymorphism (AFLP) were used to analyze accessions of the AA, BB, AB, AAA, AAB, and ABB groups of Musa, and polymorphic regions were sequenced to characterize candidate genes. One SSR locus with significant similarity to an arcelin gene revealed a deletion in a subculture regenerant. In AFLP analysis, 24 (6.15%) of 390 bands accounted for within-clone variations, with 0.5% and 5.65% occurring in natural and in vitro propagated plants, respectively. Sequence homology searches revealed that most polymorphic regions were related to cytochrome P450, cell-wall biosynthesis, and senescence genes. The importance of these candidate genes is discussed. The plants harboring the variations were field-established to relate molecular variations to phenotypic changes. Sixteen of the sequences registered in Genbank (ET165586 to ET165601) and select PCR primers from this study can be further tested for variations between normal clones and off-types in Musa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357

    Article  PubMed  CAS  Google Scholar 

  • Baurens F, David B, Sandrine C, Thierry L (2003) Using SD-AFLP and MSAP to assess CCGG Methylation in the banana genome. Plant Mol Biol Rep 21:339–348

    Article  CAS  Google Scholar 

  • Buhariwalla HK, Jarret RL, Jayashree B, Crouch JH, Ortiz R (2005) Isolation and characterization of microsatellite markers from Musa balbisiana. Mol Ecol 5:327–330

    Article  CAS  Google Scholar 

  • Chrispeels MJ, Raikhel NV (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3:1–9

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96:4198–4203

    Article  PubMed  CAS  Google Scholar 

  • Del Rio LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jimenez A, Lopez-Huertas E, Hernandez JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    Article  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Doerfler W (1983) DNA methylation and gene activity. Ann Rev Biochem 52:93–124

    Article  PubMed  CAS  Google Scholar 

  • Fulnecek JR, Matyasek A, Kovarik, Bezdek M (1998) Mapping of 5-methylcytosine residues in Nicotiana tabacum 5S rRNA genes by genomic sequencing. Mol Gen Genet 259:153–141

    Google Scholar 

  • Gimenez C, Palacios G, Colmenares M, Kahl G (2005) SAMPL: a technique for somaclonal variation fingerprinting in Musa. Plant Mol Biol Rep 23:263–269

    Article  CAS  Google Scholar 

  • Gonzalgo ML, Jones PA (1997) Mutagenic and epigenetic effects of DNA methylation. Mutat Res 386:107–118

    Article  PubMed  CAS  Google Scholar 

  • Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology 1. The epigenetic network in plants. Ann Bot 96:1143–1164

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum YT, Maveh-Many CH, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK (1998) Chromosomal basis of somaclonal variation in plants. In: Jain SM et al (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer, Dordrecht, pp 149–168

    Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for Banana. Ann Bot 100:1073–1084

    Article  PubMed  CAS  Google Scholar 

  • Hohn TS, Corsten S, Rieke M, Muller, Rothnie H (1996) Methylation of coding region alone inhibits gene expression in plant protoplasts. Proc Natl Acad Sci USA 93:8334–8339

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler S, Kaepler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  PubMed  CAS  Google Scholar 

  • Koukalova B, Fojtova M, Lim KY, Fulnecek J, Leitch AR, Kovarik A (2005) Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol 139:275–286

    Article  PubMed  CAS  Google Scholar 

  • Kubis SE, Castilho AMMF, Vershinin AV, Heslop-Harrison JS (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaes guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Leroy XJ, Leon K, Branchard M (2000) Plant genomic instability detected by microsatellite-primers. Electron J Biotechnol 3:140–148

    Google Scholar 

  • Li X, Xu M, Korban SS (2002) DNA methylation profiles differ between field and in vitro-grown leaves of apple. J Plant Physiol 159:1229–1234

    Article  Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    Article  PubMed  CAS  Google Scholar 

  • Martin G, Keller W (2004) Sequence motifs that distinguish ATP (CTP): tRNA nucleotidyl transferases from eubacterial poly(A) polymerases. RNA 10:899–906

    Article  PubMed  CAS  Google Scholar 

  • McClelland M, Nelson M, Raschke AE (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22:3640–3659

    Article  PubMed  CAS  Google Scholar 

  • Msogoya T, Grout B, Roberts A (2008) Karyotypic and 2C nuclear DNA size instability in vitro induced off-types of East African Highland Banana (Musa AAA East Africa). Biotechnology (PAK) 7:578–581

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Newbury HJ, Howell EC, Crouch JH, Ford-Lloyd BV (2000) Natural and culture-induced genetic variation in plantains (Musa spp. AAB group). Aust J Bot 48:493–500

    Article  CAS  Google Scholar 

  • Obute GC, Aziagba PC (2007) Evaluation of karyotype status of Musa L. somaclonal variants (Musaceae: Zingiberales). Turk J Bot 31:143–147

    Google Scholar 

  • Oh TJ, Cullis MA, Kunert K, Engelborghs I, Swennen R, Cullis CA (2007) Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiol Plant 129:766–774

    Article  CAS  Google Scholar 

  • Osborn TC, Alexander DC, Sun SSM, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210

    Article  CAS  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303

    Article  PubMed  CAS  Google Scholar 

  • Peraza-Echeverria S, Herrera-Valencia VA, James-Kay A (2001) Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 161:359–367

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  PubMed  CAS  Google Scholar 

  • Phillips RL, Kaepler S, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91:5222–5226

    Article  PubMed  CAS  Google Scholar 

  • Reina-Lopez GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphism. Mol Gen Genet 253:703–710

    Article  Google Scholar 

  • Rode A, Hartmann C, Benslimane A, Picard E, Quetier F (1987) Gametoclonal variation detected in the nuclear ribosomal DNA from doubled haploid lines of a spring wheat (Triticum aestivum L., cv. ‘César’). Theor Appl Genet 74:31–37

    Article  CAS  Google Scholar 

  • Scheible WR, Pauly M (2004) Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr Opin Plant Biol 7:285–295

    Article  PubMed  CAS  Google Scholar 

  • Smulders MJM (2005) Are there adequate methods for assessing somaclonal variation in tissue-propagated plants? Book of abstract., pp 201–203

  • Soniya EV, Banerjee NS, Das MR (2001) Genetic analysis of somaclonal variation among callus-derived plants of tomato. Curr Sci 80:1213–1215

    CAS  Google Scholar 

  • Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–276

    Article  PubMed  CAS  Google Scholar 

  • Torres-Cruz J, Woude MW (2003) Splipped-strand mispairing can function as a phase variation mechanism in Escherichia coli. J Bacteriol 185:6990–6994

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Sleeker M, Reijans M, Lee T, Homes M, Freiters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new concept for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Vuylsteke D, Swennen R, Wilson GF, De Langhe E (1988) Phenotypic variation among in vitro propagated plantain (Musa sp. Cultivar ‘AAB’). Sci Hortic 36:79–88

    Article  Google Scholar 

  • Vuylsteke D, Swennen R, De Langhe E (1991) Somaclonal variation in plantains (Musa spp. AAB group) derived from shoot-tip culture. Fruits 46:429–439

    Google Scholar 

  • Werck-Reichart D, Feyereisen R (2002) Cytochrome P450: a success story. Genome Biol 1:3003.1–3003.9

    Google Scholar 

  • Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532–2534

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research work was funded by the Directorate General for Development Cooperation (DGDC) of Belgium through the Strategic Musa Improvement Project (SMIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irie Vroh-Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vroh-Bi, I., Anagbogu, C., Nnadi, S. et al. Genomic characterization of natural and somaclonal variations in bananas (Musa spp.). Plant Mol Biol Rep 29, 440–448 (2011). https://doi.org/10.1007/s11105-010-0250-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0250-9

Keywords

Navigation