Skip to main content

Phosphoinositide Metabolism: Towards an Understanding of Subcellular Signaling

  • Chapter
Biology of Inositols and Phosphoinositides

Part of the book series: Subcellular Biochemistry ((SCBI,volume 39))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anantharaman, V., and Aravind, L., 2002, The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biol. 3: research0023.0021-0023.0027.

    Google Scholar 

  • Anderson, R.A., Boronenkov, I.V., Doughman, S.D., Kunz, J., and Loijens, J.C., 1999, Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J. Biol. Chem. 274: 9907–9910.

    Article  PubMed  CAS  Google Scholar 

  • Balla, T., Bondeva, T., and Varnai, P., 2000, How accurately can we image inositol lipids in living cells? Trends Pharmacol. Sci. 21: 238–241.

    Article  PubMed  CAS  Google Scholar 

  • Balla, A., Tuymetova, G., Barshishat, M., Geiszt, M., and Balla, T., 2002, Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J. Biol. Chem. 277: 20041–20050.

    Article  PubMed  CAS  Google Scholar 

  • Balla, T., and Varnai, P., 2002, Visualizing cellular phosphoinositide pools with GFP-fused proteinmodules. Sci. STKE 2002: PL3.

    PubMed  Google Scholar 

  • Bankaitis, V.A., Malehorn, D.E., Emr, S.D., and Greene, R., 1989, The saccharomyces-cerevisiae sec14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi-complex. J. Cell Biol. 108: 1271–1281.

    Article  PubMed  CAS  Google Scholar 

  • Becker, J.D., Boavida, L.C., Carneiro, J., Haury, M., and Feijo, J.A., 2003, Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol. 133: 713–725.

    Article  PubMed  CAS  Google Scholar 

  • Boss, W.F., 1989, Phosphoinositide metabolism: Its relation to signal transduction in plants, in Boss, W.F., Morre, D.J. (ed): Second Messengers in Plant Growth and Development. New York, Alan R. Liss, pp 29–56.

    Google Scholar 

  • Brown, F.D., Rozelle, A.L., Yin, H.L., Balla, T., and Donaldson, J.G., 2001, Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol. 154: 1007–1017.

    Article  PubMed  CAS  Google Scholar 

  • Bunney, T.D., Watkins, P.A., Beven, A.F., Shaw, P.J., Hernandez, L.E., Lomonossoff, G.P., Shanks, M., Peart, J., and Drøbak, B.K., 2000, Association of phosphatidylinositol 3-kinase with nuclear transcription sites in higher plants. Plant Cell 12: 1679–1688.

    Article  PubMed  CAS  Google Scholar 

  • Chang, J.-S., Seok, H., Kwon, T.-K., Min, D.S., Ahn, B.-H., Lee, Y.H., Suh, J.-W., Kim, J.-W., Iwashita, S., Omori, A., Ichinose, S., Numata, O., Seo, J.-K., Oh, Y.-S., and Suh, P.-G., 2002, Interaction of elongation factor-1alpha and pleckstrin homology domain of phospholipase c-gamma1 with activating its activity. J. Biol. Chem. 277: 19697–19702.

    Article  PubMed  CAS  Google Scholar 

  • Chen, I.A., and Szostak, J.W., 2004, Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. Proc. Natl. Acad. Sci. U.S.A. 101: 7965–7970.

    Article  PubMed  CAS  Google Scholar 

  • Cho, M.H., Tan, Z., Erneux, C., Shears, S.B., and Boss, W.F., 1995, The effects of mastoparan on the carrot cell plasma membrane polyphosphoinositide phospholipase C. Plant Physiol. 107: 845–856.

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes, M.E., Delaney, T., and Rebecchi, M.J., 1994, D-myo-Inositol 1,4,5-trisphosphate inhibits binding of phospholipase C-delta 1 to bilayer membranes. J. Biol. Chem. 269: 1945–1948.

    PubMed  CAS  Google Scholar 

  • Cockcroft, S., 1996, Phospholipid signaling in leukocytes. Curr. Opin. Hematol. 3: 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft, S., and De Matteis, M.A., 2001, Inositol lipids as spatial regulators of membrane traffic. J. Membr. Biol. 180: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Cote, G.G., and Crain, R.C., 1993, Biochemistry of phosphoinositides. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 333–356.

    Article  CAS  Google Scholar 

  • Davis, A.J., Perera, I.Y., and Boss, W.F., 2004, Cyclodextrins enhance recombinant phosphatidylinositol phosphate kinase activity. J. Lipid. Res. 45: 1783–1789.

    Article  PubMed  CAS  Google Scholar 

  • De Camilli, P., Emr, S.D., McPherson, P.S., and Novick, P., 1996, Phosphoinositides as regulators in membrane traffic. Science 271: 1533–1539.

    PubMed  Google Scholar 

  • Despres, B., Bouissonnie, F., Wu, H., Gomord, V., Guilleminot, J., Grellet, F., Berger, F., Delseny, M., and Devic, M., 2003, Three SAC1-like genes show overlapping patterns of expression in Arabidopsis but are remarkably silent during embryo development. Plant J. 34: 293–306.

    Article  PubMed  CAS  Google Scholar 

  • DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D., and Hama, H., 2001, Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in saltstressed Arabidopsis. Plant Physiol. 126: 759–769.

    Article  PubMed  CAS  Google Scholar 

  • Doughman, R.L., Firestone, A.J., and Anderson, R.A., 2003, Phosphatidylinositol phosphate kinases put PI4,5P2 in its place. J. Membr. Biol. 194: 77–89.

    Article  PubMed  CAS  Google Scholar 

  • Dove, S.K., Cooke, F.T., Douglas, M.R., Sayers, L.G., Parker, P.J., and Michell, R.H., 1997, Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390: 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Dove, S.K., Lloyd, C.W., and Drøbak, B.K., 1994, Identification of a phosphatidylinositol 3-hydroxy kinase in plant cells: Association with the cytoskeleton. Biochem. J. 303: 347–350.

    PubMed  CAS  Google Scholar 

  • Dowler, S., Currie, R.A., Campbell, D., Deak, M., Kular, G., Downes, C.P., and Alessi, D., 2000, Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem. J. 351: 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Drøbak, B.K., 1992, The plant phosphoinositide system. Biochem. J. 288: 697–712.

    PubMed  Google Scholar 

  • Drøbak, B.K., Dewey, R.E., Boss, W.F., 1999, Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells, in Jeon KW (ed): International Review of Cytology. New York, Academic Press, vol 189, pp 95–130.

    Google Scholar 

  • Drøbak, B.K., Franklin-Tong, V.E., and Staiger, C.J., 2004, The role of the actin cytoskeleton in plant cell signaling. New Phytol. 163: 13–30.

    Article  CAS  Google Scholar 

  • Drøbak, B.K., and Watkins, P.A., 2000, Inositol(1,4,5)trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS Lett. 481: 240–244.

    Article  PubMed  Google Scholar 

  • Drøbak, B.K., Watkins, P.A.C., Valenta, R., Dove, S.K., Lloyd, C.W., Staiger, C.J., 1994, Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding protein, profilin. Plant J. 6: 389–400.

    Article  Google Scholar 

  • Ek-Ramos, M.J., Racagni-Di Palma, G., and Hernandez-Sotomayor, S.M.T., 2003, Changes in phosphatidylinositol and phosphatidylinositol monophosphate kinase activities during the induction of somatic embryogenesis in Coffea arabica. Physiol. Plant. 119: 270–277.

    Article  CAS  Google Scholar 

  • Elge, S., Brearley, C., Xia, H.J., Kehr, J., Xue, H.W., and Mueller-Roeber, B., 2001, An Arabidopsis inositol phospholipid kinase strongly expressed in procambial cells: Synthesis of Ptdlns(4,5) P2 and Ptdlns(3,4,5)P3 in insect cells by 5-phosphorylation of precursors. Plant J. 26: 561–571.

    Article  PubMed  CAS  Google Scholar 

  • Eskildsen, S., Justesen, J., Schierup, M.H., and Hartmann, R., 2003, Characterization of the 2′-5′-oligoadenylate synthetase ubiquitin-like family. Nucleic Acids Res. 31: 3166–3173.

    Article  PubMed  CAS  Google Scholar 

  • Gibbon, B.C., Zonia, L.E., Kovar, D.R., Hussey, P.J., and Staiger, C.J., 1998, Pollen profiling function depends on interaction with proline-rich motifs. Plant Cell 10: 981–993.

    Article  PubMed  CAS  Google Scholar 

  • Godi, A., Di Campli, A., Konstantakopoulos, A., Di Tullio, G., Alessi, D.R., Kular, G.S., Daniele, T., Marra, P., Lucocq, J.M., and De Matteis, M.A., 2004, FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol. 6: 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Gross, W., Boss, W.F., 1993, Inositol phospholipids and signal transduction, in D.P.S. Verma (ed): Control of Plant Gene Expression. Boca Raton, CRC Press, Inc, pp 17–32.

    Google Scholar 

  • Gungabissoon, R.A., Jiang, C.-J., Drøbak, B.K., Maciver, S.K., and Hussey, P.J., 1998, Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J. 16: 689–696.

    Article  CAS  Google Scholar 

  • Hanakahi, L.A., Bartlet-Jones, M., Chappell, C., Pappin, D., and West, S.C., 2000, Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102: 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Hanczyc, M.M., Fujikawa, S.M., and Szostak, J.W., 2003, Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science 302: 618–622.

    Article  PubMed  CAS  Google Scholar 

  • Harris, T.E., and Lawrence, J.C., Jr., 2003, TOR signaling. Sci. STKE 2003: re15.

    PubMed  Google Scholar 

  • Hartmann-Petersen, R., Hendil, K.B., and Gordon, C., 2003, Ubiquitin binding proteins protect ubiquitin conjugates from disassembly. FEBS Lett. 535: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Heilmann, I., Perera, I.Y., Gross, W., and Boss, W.F., 2001, Plasma membrane phosphatidylinositol 4,5-bisphosphate decreases with time in culture. Plant Physiol. 126: 1507–1518.

    Article  PubMed  CAS  Google Scholar 

  • Helliwell, S.B., Wagner, P., Kunz, J., Deuter-Reinhard, M., Henriquez, R., and Hall, M.N., 1994, TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol. Biol. Cell 5: 105–118.

    PubMed  CAS  Google Scholar 

  • Hendrix, W., Assefa, H., and Boss, W.F., 1989, The polyphosphoinositides, phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate are present in nuclei isolated from carrot protoplasts. Protoplasma 151: 62–72.

    Article  Google Scholar 

  • Herman, P.K., and Emr, S.D., 1990, Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol. Cell Biol. 10: 6742–6754.

    PubMed  CAS  Google Scholar 

  • Hernandez, L.E., Escobar, C., Drøbak, B.K., Bisseling, T., and Brewin, N.J., 2004, Novel expression patterns of phosphatidylinositol 3-hydroxy kinase in nodulated Medicago spp. plants. J. Exp. Bot. 55: 957–959.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Sotomayor, S.M.T., De Los Santos-Briones, C., Munoz-Sanchez, J.A., and Loyola-Vargas, V.M., 1999, Kinetic analysis of phospholipase C from Catharanthus roseus transformed roots using different assays. Plant Physiol. 120: 1075–1082.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Z., Bednarek, S.Y., Blumwald, E., Hwang, I., Jurgens, G., Menzel, D., Osteryoung, K.W., Raikhel, N.V., Shinozaki, K., Tsutsumi, N., and Verma, D.P.S., 2003, A unified nomenclature for Arabidopsis dynamin-related large GTPases based on homology and possible functions. Plant Mol. Biol. 53: 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Z., and Verma, D.P., 1994, A phosphatidylinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc. Natl. Acad. Sci. U.S.A. 91: 9617–9621.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S.J., Blanchoin, L., Kovar, D.R., and Staiger, C.J., 2003, Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J. Biol. Chem. 278: 44832–44842.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, L., Mills, L.N., Pical, C., Leckie, C.P., Aitken, F.L., Kopka, J., Mueller-Roeber, B., McAinsh, M.R., Hetherington, A.M., and Gray, J.E., 2003, Phospholipase C is required for the control of stomatal aperture by ABA. Plant J. 34: 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, L., Otterhag, L., Lee, J.C., Lasheen, T., Hunt, J., Seki, M., Shinozaki, K., Sommarin, M., Gilmour, D.J., Pical, C., and Gray, J.E., 2004, Gene-specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. New Phytol. 162: 643–654.

    Article  CAS  Google Scholar 

  • Irvine, R.F., 2003, Nuclear lipid signalling. Nat. Rev. Mol. Cell Biol. 4: 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Jin, J.B., Kim, Y.A., Kim, S.J., Lee, S.H., Kim, D.H., Cheong, G.W., and Hwang, I., 2001, A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 13: 1511–1525.

    Article  PubMed  CAS  Google Scholar 

  • Kapranov, P., Routt, S.M., Bankaitis, V.A., de Bruijn, F.J., and Szczyglowski, K., 2001, Nodulespecific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell 13: 1369–1382.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.H., Eu, Y.-J., Yoo, C.M., Kim, Y.-W., Pih, K.T., Jin, J.B., Kim, S.J., Stenmark, H., and Hwang, I., 2001a, Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13: 287–301.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.W., Park, D.S., Park, S.C., Kim, S.H., Cheong, G.W., and Hwang, I., 2001b, Arabidopsis dynamin-like 2 that binds specifically to phosphatidylinositol 4-phosphate assembles into a high-molecular weight complex in vivo and in vitro. Plant Physiol. 127: 1243–1255.

    Article  PubMed  CAS  Google Scholar 

  • Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C., and Chua, N.H., 1999, Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 145: 317–330.

    Article  PubMed  CAS  Google Scholar 

  • Kovar, D.R., Drøbak, B.K., and Staiger, C.J., 2000, Maize profilin isoforms are functionally distinct. Plant Cell 12: 583–598.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, J., Fuelling, A., Kolbe, L., and Anderson, R.A., 2002, Stereo-specific substrate recognition by phosphatidylinositol phosphate kinases is swapped by changing a single amino acid residue. J. Biol. Chem. 277: 5611–5619.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, J., Wilson, M.P., Kisseleva, M., Hurley, J.H., Majerus, P.W., and Anderson, R.A., 2000, The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol. Cell 5: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Laude, A.J., and Prior, I.A., 2004, Plasma membrane microdomains: Organization, function and trafficking. Mol. Membr. Biol. 21: 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.H., Jin, J.B., Song, J.H., Min, M.K., Park, D.S., Kim, Y.W., and Hwang, I.H., 2002, The intermolecular interaction between the PH domain and the C-terminal domain of Arabidopsis dynamin-like 6 determines lipid binding specificity. J. Biol. Chem. 277: 31842–31849.

    Article  PubMed  CAS  Google Scholar 

  • Lemmon, M.A., 2003, Phosphoinositide recognition domains. Traffic 4: 201–213.

    Article  PubMed  CAS  Google Scholar 

  • Lemmon, M.A., Ferguson, K.M., and Schlessinger, J., 1996, PH domains: Diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85: 621–624.

    Article  PubMed  CAS  Google Scholar 

  • Levine, T.P., and Munro, S., 2002, Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and-independent components. Curr. Biol. 12: 695–704.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Li, M., Zhang, W., Welti, R., and Wang, X., 2004, The plasma membrane-bound phospholipase Ddelta enhances freezing tolerance in Arabidopsis thaliana. Nat. Biotechnol. 22: 427–433.

    Article  PubMed  CAS  Google Scholar 

  • Lipsky, J.J., and Lietman, P.S., 1980, Neomycin inhibition of adenosine triphosphatase: Evidence for a neomycin-phospholipid interaction. Antimicrob. Agents Chemother. 18: 532–535.

    PubMed  CAS  Google Scholar 

  • Loewen, C.J., Gaspar, M.L., Jesch, S.A., Delon, C., Ktistakis, N.T., Henry, S.A., and Levine, T.P., 2004, Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304: 1644–1647.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, K., Bassham, D.C., Raikhel, N.V., and Nakamura, K., 1995, Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 130: 1307–1318.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, H.J.G., and Munnik, T., 2003, Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 54: 265–306.

    Article  PubMed  CAS  Google Scholar 

  • Mejillano, M., Yamamoto, M., Rozelle, A.L., Sun, H.Q., Wang, X.D., and Yin, H.L., 2001, Regulation of apoptosis by phosphatidylinositol 4,5-bisphosphate inhibition of caspases, and caspase inactivation of phosphatidylinositol phosphate 5-kinases. J. Biol. Chem. 276: 1865–1872.

    Article  PubMed  CAS  Google Scholar 

  • Melin, P.M., Pical, C., Jergil, B., and Sommarin, M., 1992, Polyphosphoinositide phospholipase C in wheat root plasma membranes. Partial purification and characterization. Biochim. Biophys. Acta 1123: 163–169.

    PubMed  CAS  Google Scholar 

  • Melin, P.M., Sommarin, M., Sandelius, A.S., and Jergil, B., 1987, Identification of Ca2+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes. FEBS Lett. 223: 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Mikami, K., Takahashi, S., Katagiri, T., Yamaguchi-Shinozaki, K., and Shinozaki, K., 1999, Isolation of an Arabidopsis thaliana cDNA encoding a pleckstrin homology domain protein, a putative homologue of human pleckstrin. J. Exp. Bot. 334: 729–730.

    Article  Google Scholar 

  • Mills, L.N., Hunt, L., Leckie, C.P., Aitken, F.L., Wentworth, M., McAinsh, M.R., Gray, J.E., and Hetherington, A.M., 2004, The effects of manipulating phospholipase C on guard cell ABAsignalling. J. Exp. Bot. 55: 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Minogue, S., Anderson, J.S., Waugh, M.G., dos Santos, M., Corless, S., Cramer, R., and Hsuan, J.J., 2001, Cloning of a human type II phosphatidylinositol 4-kinase reveals a novel lipid kinase family. J. Biol. Chem. 276: 16635–16640.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, P., Zhang, Y., Rameh, L.E., Ivshina, M.P., McCollum, D., Nunnari, J.J., Hendricks, G.M., Kerr, M.L., Field, S.J., Cantley, L.C., and Ross, A.H., 2004, A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast. J. Cell Biol. 166: 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Monks, D.E., Aghoram, K., Courtney, P.D., DeWald, D.B., and Dewey, R.E., 2001, Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell 13: 1205–1219.

    Article  PubMed  CAS  Google Scholar 

  • Morse, M.J., Crain, R.C., and Satter, R.L., 1987, Light-stimulated inositol phospholipid turnover in Samanea saman leaf pulvini. Proc. Natl. Acad. Sci. U.S.A. 84: 7075–7078.

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Roeber, B., and Pical, C., 2002, Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol. 130: 22–46.

    Article  PubMed  CAS  Google Scholar 

  • Munnik, T., Irvine, R.F., and Musgrave, A., 1998, Phospholipid signalling in plants. Biochim. Biophys. Acta 1389: 222–272.

    PubMed  CAS  Google Scholar 

  • Nishikawa, K., Toker, A., Wong, K., Marignani, P.A., Johannes, F.J., and Cantley, L.C., 1998, Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem. 273: 23126–23133.

    Article  PubMed  CAS  Google Scholar 

  • Novick, P., Osmond, B.C., and Botstein, D., 1989, Suppressors of yeast actin mutations. Genetics 121: 659–674.

    PubMed  CAS  Google Scholar 

  • Odom, A.R., Stahlberg, A., Wente, S.R., and York, J.D., 2000, A role for nuclear inositol 1,4, 5-trisphosphate kinase in transcriptional control. Science 287: 2026–2029.

    Article  PubMed  CAS  Google Scholar 

  • Pappan, K., and Wang, X., 1999, Molecular and biochemical properties and physiological roles of plant phospholipase D. Biochim. Biophys. Acta 1439: 151–166.

    PubMed  CAS  Google Scholar 

  • Pendaries, C., Tronchere, H., Plantavid, M., and Payrastre, B., 2003, Phosphoinositide signaling disorders in human diseases. FEBS Lett. 546: 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Perera, I.Y., Davis, A.J., Galanopoulou, D., Im, Y.J., Boss, W.F., 2005, Characterization and comparative analysis of Arabidopsis phosphatidylinositol phosphate 5-kinase 10 reveals differences in Arabidopsis and human phosphatidylinositol phosphate kinases. FEBS Lett. 579: 3427–32.

    Article  PubMed  CAS  Google Scholar 

  • Perera, I.Y., Heilmann, I., and Boss, W.F., 1999, Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc. Natl. Acad. Sci. U.S.A. 96: 5838–5843.

    Article  PubMed  CAS  Google Scholar 

  • Perera, I.Y., Heilmann, I., Chang, S.C., Boss, W.F., and Kaufman, P.B., 2001, A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol. 125: 1499–1507.

    Article  PubMed  CAS  Google Scholar 

  • Perera, I.Y., Love, J., Heilmann, I., Thompson, W.F., and Boss, W.F., 2002, Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase. Plant Physiol. 129: 1795–1806.

    Article  PubMed  CAS  Google Scholar 

  • Peterman, T.K., Ohol, Y., McReynolds, L., and Luna, E.J., 2004, Patellin1, a novel sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol. 136: 3080–3094.

    Article  PubMed  CAS  Google Scholar 

  • Pical, C., Westergren, T., Dove, S.K., Larsson, C., and Sommarin, M., 1999, Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J. Biol. Chem. 274: 38232–38240.

    Article  PubMed  CAS  Google Scholar 

  • Racker, E., 1985, Reconstitutions of transporters, receptors, and pathological states. Orlando, Academic Press.

    Google Scholar 

  • Roth, M.G., 1999, Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol. 9: 174–179.

    Article  PubMed  CAS  Google Scholar 

  • Roth, M.G., 2004, Phosphoinositides in constitutive membrane traffic. Physiol. Rev. 84: 699–730.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, J.P., and Chua, N.H., 2001, Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell 13: 1143–1154.

    Article  PubMed  CAS  Google Scholar 

  • Sandelius, A.S., Sommarin, M., 1990, Membrane-localized reactions involved in polyphosphoinositide turnover in plants, in Morre, D.J., Boss, W.F., Loewus, F. (ed): Inositol Metabolism in Plants. New York, Wiley-Liss, pp 139–161.

    Google Scholar 

  • Shank, K.J., Su, P., Brglez, I., Boss, W.F., Dewey, R.E., and Boston, R.S., 2001, Induction of lipid metabolic enzymes during the endoplasmic reticulum stress response in plants. Plant Physiol. 126: 267–277.

    Article  PubMed  CAS  Google Scholar 

  • Simonsen, A., Wurmser, A.E., Emr, S.D., and Stenmark, H., 2001, The role of phosphoinositides in membrane transport. Curr. Opin. Cell. Biol. 13: 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Sprong, H., van der Sluijs, P., and van Meer, G., 2001, How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2: 504–513.

    Article  PubMed  CAS  Google Scholar 

  • Staiger, C.J., Gibbon, B.C., Kovar, D.R., and Zonia, L.E., 1997, Profilin and actin-depolymerizing factor: Modulators of actin organization in plants. Trends Plant Sci. 7: 275–281.

    Article  Google Scholar 

  • Staxen, I., Pical, C., Montgomery, L.T., Gray, J.E., Hetherington, A.M., and McAinsh, M.R., 1999, Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc. Natl. Acad. Sci. U.S.A. 96: 1779–1784.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, J.M., Perera, I.Y., and Boss, W.F., 1998, A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J. Biol. Chem. 273: 22761–22767.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, J.M., Perera, I.Y., Heilmann, I., Persson, S., and Boss, W.F., 2000, Inositol signaling and plant growth. Trends Plant Sci. 5: 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson-Paulik, J., Love, J., and Boss, W.F., 2003, Differential regulation of two Arabidopsis type III phosphatidylinositol 4-kinase isoforms. A regulatory role for the pleckstrin homology domain. Plant Physiol. 132: 1053–1064.

    Article  PubMed  CAS  Google Scholar 

  • Suer, S., Sickmann, A., Meyer, H.E., Herberg, F.W., and Heilmeyer, L.M., Jr., 2001, Human phosphatidylinositol 4-kinase isoform PI4K92. Expression of the recombinant enzyme and determination of multiple phosphorylation sites. Eur. J. Biochem. 268: 2099–2106.

    Article  PubMed  CAS  Google Scholar 

  • Takenawa, T., and Itoh, T., 2001, Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta 1533: 190–206.

    PubMed  CAS  Google Scholar 

  • Tan, Z., and Boss, W.F., 1992, Association of phosphatidylinositol kinase, phosphatidylinositol monophosphate kinase, and diacylglycerol kinase with the cytoskeleton and F-actin fractions of carrot (Daucus carota L.) cells grown in suspension culture. Plant Physiol. 100: 2116–2120.

    PubMed  CAS  Google Scholar 

  • Tronchere, H., Buj-Bello, A., Mandel, J.L., and Payrastre, B., 2003, Implication of phosphoinositide phosphatases in genetic diseases: The case of myotubularin. Cell Mol. Life Sci. 60: 2084–2099.

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwen, W., Okresz, L., Bogre, L., and Munnik, T., 2004, Learning the lipid language of plant signalling. Trends Plant Sci. 9: 378–384.

    Article  PubMed  CAS  Google Scholar 

  • van Meer, G., and Sprong, H., 2004, Membrane lipids and vesicular traffic. Curr. Opin. Cell Biol. 16: 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, P., Chua, M., Nogue, F., Fairbrother, A., Mekeel, H., Xu, Y., Allen, N., Bibikova, T.N., Gilroy, S., Bankaitis, V.A., 2005, A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol. 168: 801–12.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, J.P., Caldwell, K.K., and Majerus, P.W., 1991, Formation of phosphatidylinositol 3-phosphate by isomerization from phosphatidylinositol 4-phosphate. Proc. Natl. Acad. Sci. U.S.A. 88: 9184–9187.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., 1999, The role of phospholipase D in signaling cascades. Plant Physiol. 120: 645–651.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., 2001, Plant phospholipases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 211–231.

    Article  PubMed  CAS  Google Scholar 

  • Wei, Y.J., Sun, H.Q., Yamamoto, M., Wlodarski, P., Kunii, K., Martinez, M., Barylko, B., Albanesi, J.P., and Yin, H.L., 2002, Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. J. Biol. Chem. 277: 46586–46593.

    Article  PubMed  CAS  Google Scholar 

  • Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.-E., Rajashekar, C.B., Williams, T.D., and Wang, X., 2002, Profiling membrane lipids in plant stress responses. Role of phospholipase Dalpha in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 277: 31994–32002.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, M.R., Lucast, L., Di Paolo, G., Romanelli, A.J., Suchy, S.F., Nussbaum, R.L., Cline, G.W., Shulman, G.I., McMurray, W., and De Camilli, P., 2003, Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol. 21: 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Westergren, T., Dove, S.K., Sommarin, M., and Pical, C., 2001, AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P2 and PtdIns(4,5)P2 in vitro and is inhibited by phosphorylation. Biochem. J. 359: 583–589.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, J.J., and Boss, W.F., 1987, Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells. Plant Physiol. 85: 389–392.

    Article  PubMed  CAS  Google Scholar 

  • Williams, M.E., Torabinejad, J., Cohick, E., Parker, K., Drake, E.J., Thompson, J.E., Hortter, M., Dewald, D.B., 2005, Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to over accumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol. 138: 686–700.

    Article  PubMed  CAS  Google Scholar 

  • Xu, P., Lloyd, C.W., Staiger, C.J., and Drøbak, B.K., 1992, Association of phosphatidylinositol 4-kinase with the plant cytoskeleton. Plant Cell 4: 941–951.

    Article  PubMed  CAS  Google Scholar 

  • Xue, H.W., Pical, C., Brearley, C., Elge, S., and Muller-Rober, B., 1999, A plant 126-kDa phosphatidylinositol 4-kinase with a novel repeat structure. Cloning and functional expression in baculovirus-infected insect cells. J. Biol. Chem. 274: 5738–5745.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., and Boss, W.F., 1994a, Regulation of phosphatidylinositol 4-kinase by the protein activator PIK-A49. Activation requires phosphorylation of PIK-A49. J. Biol. Chem. 269: 3852–3857.

    PubMed  CAS  Google Scholar 

  • Yang, W., and Boss, W.F., 1994b, Regulation of the plasma membrane type III phosphatidylinositol 4-kinase by positively charged compounds. Arch. Biochem. Biophys. 313: 112–119.

    Article  PubMed  CAS  Google Scholar 

  • Yin, H.L., and Janmey, P.A., 2002, Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 2: 2.

    Google Scholar 

  • Zhao, X.H., Bondeva, T., and Balla, T., 2000, Characterization of recombinant phosphatidylinositol 4-kinase beta reveals auto-and heterophosphorylation of the enzyme. J. Biol. Chem. 275: 14642–14648.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, R., and Ye, Z.-H., 2003, The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol. 132: 544–555.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Boss, W.F., Davis, A.J., Im, Y.J., Galvão, R.M., Perera, I. (2006). Phosphoinositide Metabolism: Towards an Understanding of Subcellular Signaling. In: Majumder, A.L., Biswas, B.B. (eds) Biology of Inositols and Phosphoinositides. Subcellular Biochemistry, vol 39. Springer, Boston, MA . https://doi.org/10.1007/0-387-27600-9_8

Download citation

Publish with us

Policies and ethics