Skip to main content

Advertisement

Log in

Cloning and Characterization of the BcTuR3 Gene Related to Resistance to Turnip Mosaic Virus (TuMV) from Non-heading Chinese Cabbage

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

A cDNA clone for the turnip mosaic virus (TuMV)-induced gene in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino cv. Duanbaigeng) was isolated and characterized. The full-length cDNA clone, designated BcTuR3, was isolated during resistance response to TuMV. Sequence analysis of the cDNA clone confirmed that the translation product of the gene is homologous to other plant resistance proteins. Genomic DNA Southern blot analysis indicated that the gene represented a small multi-gene family. Northern hybridizations confirmed its elevated expression in the resistant “Duanbaigeng” and the susceptible “Aijiaohuang.” Upon inoculation with TuMV, the BcTuR3 transcript was rapidly accumulated in the infected leaves and stems. Tissue-specific expression of the gene showed that higher levels of the BcTuR3 transcript were observed in the TuMV-infected leaves, and later in the stems and roots of the resistant and susceptible varieties. These data showed that the BcTuR3 gene may be involved in plant resistance against TuMV pathogen infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TuMV:

Turnip mosaic virus

RACE:

Rapid amplification of cDNA ends

UTR:

Untranslated region

ORF:

Open reading frame

RT-PCR:

Real-time quantitative PCR

R-genes:

Resistance genes

SA:

Salicylic acid

SAR:

Systemic acquired resistance

References

  • Aarts MG, Hekkert B, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact 11:251–258

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Anderson P, Lawrence G, Morrish B, AyliVe M, Finnegan E, Ellis J (1997) Inactivation of the Xax rust resistance gene M associated with the loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9:641–651

    Article  CAS  PubMed  Google Scholar 

  • Busam G, Kassemeyer HH, Matern U (1997) Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol 115:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Cao SC, Hou XL, Zhang SN, Zhu YL, Liu KJ (1998) Studies on breeding for disease resistance in non-heading Chinese cabbage VII. Breeding of a new variety Dwarf Resistant No. 4. J Nanjing Agr Univ 21:24–29

    Google Scholar 

  • Cao BH, Song HY, Lei JJ, Song M, Yang ZH (2002) Cloning a gene related to resistance to TuMV in cabbage. Acta Genetica Sinica 29:565–570

    Google Scholar 

  • Clark M, Adams A (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. J Gen Virol 34:475–483. doi:10.1099/0022-1317-34-3-475

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones DG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833. doi:10.1038/35081161

    Article  CAS  PubMed  Google Scholar 

  • Delaney TP, Freidrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92:6602–6606

    Article  CAS  PubMed  Google Scholar 

  • Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JDG (1998) The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10:1915–1925

    Article  CAS  PubMed  Google Scholar 

  • Farzadfar S, Tomitaka Y, Ikematsu M, Golnaraghi A, Pourrahim R, Ohshima K (2009) Molecular characterisation of turnip mosaic virus isolates from Brassicaceae weeds. Eur J Plant Pathol 124:45–55. doi:10.1007/s10658-008-9390-2

    Article  CAS  Google Scholar 

  • Flor HH (1971) The current status of gene for gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  CAS  PubMed  Google Scholar 

  • Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272

    Article  CAS  PubMed  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846. doi:10.1126/science.7638602

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Chini A, Basu D, Loake GJ (2003) Targeted activation tagging of the Arabidopsis NBS–LRR gene, ADR1, conveys resistance to virulent pathogens. Mol Plant Microbe Interact 16:669–680

    Article  CAS  PubMed  Google Scholar 

  • Hamiduzzaman MM, Jakab G, Barnavon L, Neuhaus JM, Mauch-Mani B (2005) Beta-aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol Plant Microbe Interact 18:819–829

    Article  CAS  PubMed  Google Scholar 

  • Hughes SL, Hunter PJ, Sharpe AG, Kearsey MJ, Lydiate DJ, Walsh JA (2003) Genetic mapping of the novel turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theor Appl Genet 107:1169–1173. doi:10.1007/s00122-003-1363-4

    Article  CAS  PubMed  Google Scholar 

  • Jami S, Swathi A, Lalitha G, Kirti P (2007) Molecular, biochemical and structural characterization of osmotin-like protein from black nightshade (Solanum nigrum). J Plant Physiol 164:238–252

    Article  CAS  PubMed  Google Scholar 

  • Jenner CE, Tomimura K, Ohshima K, Hughes SL, Walsh JA (2002) Mutations in turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59. doi:10.1006/viro.2002.1519

    Article  CAS  PubMed  Google Scholar 

  • Johal G, Briggs S (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987. doi:10.1126/science.1359642

    Article  CAS  PubMed  Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  CAS  PubMed  Google Scholar 

  • Kortekamp A (2006) Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiol Biochem 44:58–67

    Article  CAS  PubMed  Google Scholar 

  • Kortekamp A, Zyprian E (2003) Characterization of Plasmopara-resistance in grapevine using in vitro plants. J Plant Physiol 160:1393–1400. doi:10.1078/0176-1617-01021

    Article  CAS  PubMed  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429. doi:10.1038/ng1296-421

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ekramoddoullah AKM (2003) Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. Ex. D. Don.). Mol Genet Genom 270:432–441

    Article  CAS  Google Scholar 

  • Liu KJ, ZhuYL HXL, Zhang SN, Cao SC (1997) Studies on breeding for disease resistance in non-heading Chinese cabbage IV. indentification and screening for multiple resistance to turnip mosaic virosis, downy mildew and black spot in non-heading Chinese cabbage. J Nanjing Agr Univ 20:31–35

    Google Scholar 

  • Marchler-Bauer A, Anderson J, Derbyshire M et al (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35:D237–D240. doi:10.1093/nar/gkl951

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  CAS  PubMed  Google Scholar 

  • Mitchell E, Bond J (2005) Variation in the coat protein sequence of British isolates of Turnip yellow mosaic virus and comparison with previously published isolates. Arch Virol 150:2347–2355. doi:10.1007/s00705-005-0593-y

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KK, Mikkelsen JD, Kragh KM, Bojsen K (1993) An acidic class III chitinase in sugar beet: induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants. Mol Plant Microbe Interact 6:495–506

    CAS  PubMed  Google Scholar 

  • Rivkin MI, Vallejos CE, McClean PE (1999) Disease-resistance related sequences in common bean. Genome 42:41–47

    Article  CAS  PubMed  Google Scholar 

  • Shattuck VI (1992) The biology, epidemiology, and control of turnip mosaic virus. Plant Breed Rev 14:199–238

    Google Scholar 

  • Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microb Interact 11:815–823

    Article  CAS  Google Scholar 

  • Song WY, Pi LY, Wang GL, Gardner J, Holsten T, Ronald PC (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Lagudah ES (2003) Homoeologous set of NBS-LRR genes located at leaf and stripe rust resistance loci on short arms of chromosome 1 of wheat. Funct Integr Genomics 3:86–90. doi:10.1007/s10142-002-0074-2

    CAS  PubMed  Google Scholar 

  • Terras FR, Penninckx IA, Goderis IJ, Broekaert WF (1998) Evidence that the role of plant defensins in radish defense responses is independent of salicylic acid. Planta 206:117–124

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681. doi:10.1111/j.1744-7348.1987.tb04187.x

    Article  Google Scholar 

  • Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300. doi:10.1046/j.1364-3703.2002.00132.x

    Article  CAS  PubMed  Google Scholar 

  • Walsh JA, Sharpe AG, Jenner CE, Lydiate DJ (1999) Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet 99:1149–1154. doi:10.1007/s001220051319

    Article  CAS  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Wilkie S (1996) Genomic DNA isolation, southern blotting, and hybridization. In: Clarke MS (ed) Plant molecular biology, a laboratory manual. Springer-Verlag, New York, pp 3–8

    Google Scholar 

  • Yang SH, Gu TT, Pan CY, Feng ZM, Ding J, Hang YU, Chen JQ, Tian DC (2008) Genetic variation of NBS-LRR class resistance genes in rice lines. Theor Appl Genet 116:165–177. doi:10.1007/s00122-007-0656-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Innovative Scholars Project of Jiangsu Provincial Natural Science Foundation of China (No. BK2008035) and the earmarked fund for Modern Agro-industry Technology Research System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Hou, X., Xiao, D. et al. Cloning and Characterization of the BcTuR3 Gene Related to Resistance to Turnip Mosaic Virus (TuMV) from Non-heading Chinese Cabbage. Plant Mol Biol Rep 28, 588–596 (2010). https://doi.org/10.1007/s11105-010-0183-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0183-3

Keywords

Navigation