Skip to main content
Log in

Sugarcane Phosphoribosyl Pyrophosphate Synthetase: Molecular Characterization of a Phosphate-independent PRS

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Phosphoribosyl pyrophosphate synthetase (PRS—EC:2.7.6.1) is an important enzyme present in several metabolic pathways, thus forming a complex family of isoenzymes. However, plant PRS enzymes have not been extensively investigated. In this study, a sugarcane prs gene has been characterized from the Sugar Cane Expressed Sequence Tag Genome Project. This gene contains a 984-bp open reading frame encoding a 328-amino acid protein. The predicted amino acid sequence has 77% and 78% amino acid sequence identity to Arabidopsis thaliana and Spinacia oleracea PRS4, respectively. The assignment of sugarcane PRS as a phosphate-independent PRS isoenzyme (Class II PRS) is verified following enzyme assay and phylogenetic reconstruction of PRS homologues. To gain further insight into the structural framework of the phosphate independence of sugarcane PRS, a molecular model is described. This model reveals the formation of two conserved domains elucidating the structural features involved in sugarcane PRS phosphate independence. The recombinant PRS retains secondary structure elements and a quaternary arrangement consistent with known PRS homologues, based on circular dichroism measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PRS:

phosphoribosyl pyrophosphate synthetase

SUCEST:

Sugar Cane EST Genome Project

EST:

expressed sequence tag

PRPP:

5-phosphoribosyl-α-1-pyrophosphate

IPTG:

isopropyl β-d-1-thiogalactopyranoside

AMP:

adenine ribonucleotide monophosphate

ATP:

adenine ribonucleotide triphosphate

References

  • Arruda P. Sugarcane transcriptome. A landmark in plant genomics in the tropics. Genetics Mol Biol 2001;24:1–296. (Editorial).

    Google Scholar 

  • Becker MA, Itkin P. Radioimmunoassay studies of human phosphoribosylpyrophosphate synthetase. Adv Exp Med Biol 1984;165(Pt B):5–10.

    PubMed  CAS  Google Scholar 

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 1983;4:187–217.

    Google Scholar 

  • Carter AT, Narbad A, Pearson BM, Beck KF, Logghe M, Contreras R, Schweizer M. Phosphoribosyl pyrophosphate synthethase (PRS): a new gene family in Saccharomyces cerevisae. Yeast 1994;10:1031–44.

    Article  PubMed  CAS  Google Scholar 

  • Carter AT, Beiche F, Hove-Jensen B, Narbad A, Barker PJ, Schweizer LM, Schweizer M. PRS1 is a key member of the gene family encoding phosphoribosylpyrophosphate synthetase in Saccharomyces cerevisiae. Mol Gen Genet 1997;254:148–56.

    Article  PubMed  CAS  Google Scholar 

  • Castreana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–52.

    Google Scholar 

  • Eriksen TA, Kadziola A, Bentsen AK, Harlow KW, Larsen S. Structural basis for the function of Bacillus subtilis phosphoribosylpyrophosphate synthetase. Nature Struct Biol 2000;7:303–8.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.5c. Seattle, WA: Department of Genetics, University of Washington; 2002. (Distributed by the author).

    Google Scholar 

  • Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci 2000;9:1753–73.

    PubMed  CAS  Google Scholar 

  • Hernando Y, Parr A, Schweizer M. PRS5, the fifth member of the phosphoribosyl pyrophosphate synthetase gene gamily in Saccharomyces cerevisiae, is essential for cell viability in the absence of either PRS1 or PRS3. J Bacteriol 1998;180:6404–7.

    PubMed  CAS  Google Scholar 

  • Hillebrand S, Garcia W, Cantú MD, Araújo APU, Tanaka M, Tanaka T, Garratt RC, Carrilho E. In vitro monitoring of GTPase activity and enzyme kinetics studies using capillary electrophoresis. Anal Bioanal Chem 2005;383:92–7.

    Article  PubMed  CAS  Google Scholar 

  • Hinmelreich R, Hilbert H, Plagens H, Pirkl E, Bi-Chen L, Herrmann R. Complete sequence analysis of the genome of bacterium Mycoplasma pneumoniae. Nucleic Acids Res 1996;24:4420–49.

    Article  Google Scholar 

  • Hove-Jensen B, Harlow KW, King CJ, Switzer RL. Phosphosibosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene. J Biol Chem 1986;261:6765–71.

    PubMed  CAS  Google Scholar 

  • Iizasa T, Taira M, Shimada H, Kudoh J, Shimizu N, Tatibana M. A human testis-specific mRNA for phosphoribosylpyrophosphate synthethase that initiates from a non-AUG codon. J Biol Chem 1990;265:16491–7.

    PubMed  Google Scholar 

  • Iizasa T, Taira M, Ishijima S, Shimada H, Tatibana M. Molecular cloning and sequencing of human cDNA for phosphoribosyl pyrophosphate synthethase subunit II. FEBS Lett 1989;244:47–50.

    Article  PubMed  CAS  Google Scholar 

  • Ishijima S, Taira M, Tatibana M. Complete cDNA sequence of rat phosphoribosylpyrophosphate synthethase subunit II (PRS II). Nucleic Acids Res 1989;17:8859.

    Article  PubMed  CAS  Google Scholar 

  • Jancso MA, Sculaccio SA, Thiemann OH. Identification of sugarcane genes involved in the purine synthesis pathway. Gen Mol Biol 2001;24:251–5.

    CAS  Google Scholar 

  • Kaneko T, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 1996;3:109–36.

    Article  PubMed  CAS  Google Scholar 

  • Krath BN, Hove-Jensen B. Organellar and cytosolic localization of four phosphosribosyl diphosphate synthase isozymes in Spinach. Plant Phys. 1999;119:497–505.

    Article  Google Scholar 

  • Krath BN, Eriksen TA, Poulsen TS, Hove-Jensen B. Cloning and sequencing of cDNAs specifying a novel class of phosphosribosyl diphosphate synthase in Arabidopsis thaliana. Biochim Biophys Acta 1999;1430(2):403–8.

    PubMed  CAS  Google Scholar 

  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993;26:283–91.

    Article  CAS  Google Scholar 

  • Liesener A, Karst U. Monitoring enzymatic conversions by mass spectrometry: a critical review. Anal Bioanal Chem 2005;382:1451–64.

    Article  PubMed  CAS  Google Scholar 

  • Marti-Renom MA, Stuart A, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 2000;29:291–325.

    Article  PubMed  Google Scholar 

  • Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 1987;262:10035–8.

    PubMed  CAS  Google Scholar 

  • Nilsson D, Hove-Jensen B, Arnvig K. Primary structure of the tms and prs genes of Bacillus subtilis. Mol Gen Genet 1989;218:565–71.

    Article  PubMed  CAS  Google Scholar 

  • Payne TL, Calderone RA. Isolation of phosphoribosylpyrophosphate synthetase (PRS1) gene from Candida albicans. Yeast 1995;11:1295–1302.

    Article  PubMed  Google Scholar 

  • Post DA, Swtizer RL, Hove-Jensen B. The defective phosphoribosyl diphosphate synthase in s temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis. Microbiology 1996;142:359–65.

    PubMed  CAS  Google Scholar 

  • Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain conformations. J Mol Biol 1963;7:95–9.

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 1993;234:779–815.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, et al. The genome sequence and structure of rice chromosome 1. Nature 2002;420:312–6.

    Article  PubMed  CAS  Google Scholar 

  • Segel IH. Biochemical calculations. New York: Wiley; 1976.

    Google Scholar 

  • Sheng L, Yongcheng L, Baozhen P, Jianping D. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site. Biochem J 2007;401:39–47.

    Article  Google Scholar 

  • Sonoda T, Taira M, Ishijima S, Ishizuka T, Iiazasa T, Tatibana M. Complete nucleotide sequence of human phosphoribosyl pyrophosphate synthethase subunit I (PRS I) cDNA and a comparison with human and rat PRPS gene families. J Biochem 1991;109:361–4.

    PubMed  CAS  Google Scholar 

  • Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 2000;287:252–60.

    PubMed  Google Scholar 

  • Strimmer K, von Haeseler A. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 1996;13:964–9.

    CAS  Google Scholar 

  • Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci USA 1997;94:6815–9.

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–82.

    Article  PubMed  CAS  Google Scholar 

  • Torres R, Mateos F, Puig JG, Becker MA. Determination of the activity of recombinant human phosphoribosylpyrophosphate synthetase isoform 1 by a non-isotopic, one-step method. Adv Exp Med Biol 1994;370:821–4.

    PubMed  CAS  Google Scholar 

  • Vettore AL, Silva FR, Kemper EL, Arruda P. The libraries that made SUCEST. Gen Mol Biol 2001;24:1–7.

    CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, et al. The genome sequence of Schizosaccharomyces pombe. Nature 2002;415:871–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a research grant 99/02874-9 to O.H. Thiemann (FAPESP). H.B. Napolitano receives scholarship from FAPESP. We would like to thank the members of the Protein Crystallography and Structural Biology and Biophysics Groups (IFSC-USP) for helpful discussions in the course of this work. We are grateful to Professor Lewis Joel Greene and Dr. Vitor Marcel Faça of the Protein Chemistry Centre, Medicine School of Ribeirão Preto, for the amino-terminal sequencing of the PRS fragments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otavio Henrique Thiemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sculaccio, S.A., Napolitano, H.B., Beltramini, L.M. et al. Sugarcane Phosphoribosyl Pyrophosphate Synthetase: Molecular Characterization of a Phosphate-independent PRS. Plant Mol Biol Rep 26, 301–315 (2008). https://doi.org/10.1007/s11105-008-0043-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0043-6

Keywords

Navigation