Skip to main content
Log in

Crop rotations differ in soil carbon stabilization efficiency, but the response to quality of structural plant inputs is ambiguous

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Evaluate crop rotation diversity, perenniality, carbon (C) inputs, and C input quality as predictors of soil organic carbon (SOC) concentration and aggregate mean weight diameter (MWD).

Methods

At a crop rotation trial in its 37th year in Ontario, Canada, species in rotations included corn (C, Zea mays L.), alfalfa (A, Medicago sativa L.), soybean (S, Glycine max (L.) Merr.), winter wheat (W, Triticum aestivum L.), and red clover (rc, Trifolium pratense L.). Rotations were: CC, CCAA, CCSS, CCSW, CCSWrc, AA. Soils (0–20 cm) were analyzed for aggregate MWD, aggregate C, and SOC concentrations. We estimated C inputs from historical yields and C input quality (C:N, lignin: N, or NMR-derived index) from structural plant tissues. C stabilization efficiency was estimated as the ratio of SOC stock per unit total or root C input.

Results

Crop rotation diversity failed to increase SOC concentrations or aggregate MWD. Perennialized rotations (CCSWrc, CCAA, AA) maintained the numerically highest SOC concentrations, and root C input increased SOC concentration. Out of 12 statistical tests relating C input quality to C stabilization efficiency, only 3 indicated a positive effect and 6 tests indicated a negative effect.

Conclusions

Including a perennial forage such as alfalfa and limiting soybean frequency promotes aggregate MWD and SOC concentration more so than optimizing crop rotation diversity. Quality of structural plant inputs does not explain differences in C stabilization efficiency, possibly due to overriding influence of living root inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abid M, Lal R (2009) Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration. Soil Tillage Res 103:364–372. https://doi.org/10.1016/j.still.2008.11.004

    Article  Google Scholar 

  • Abiven S, Menasseri S, Chenu C (2009) The effects of organic inputs over time on soil aggregate stability – a literature analysis. Soil Biol Biochem 41:1–12. https://doi.org/10.1016/j.soilbio.2008.09.015

    Article  CAS  Google Scholar 

  • Anderson-Teixeira KJ, Masters MD, Black CK, Zeri M, Hussain MZ, Bernacchi CJ, DeLucia EH (2013) Altered belowground carbon cycling following land-use change to perennial bioenergy crops. Ecosystems 16:508–520. https://doi.org/10.1007/s10021-012-9628-x

  • Angst G, Mueller KE, Kögel-Knabner I, Freeman KH, Mueller CW (2017) Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter. Biogeochemistry 132:307–324. https://doi.org/10.1007/s10533-017-0304-2

    Article  CAS  Google Scholar 

  • Austin EE, Wickings K, Mcdaniel MD et al (2017) Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 9:1–12. https://doi.org/10.1111/gcbb.12428

    Article  CAS  Google Scholar 

  • Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wilson MA (1992) Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 16:1–42

  • Barthès B, Roose E (2002) Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47:133–149. https://doi.org/10.1016/S0341-8162(01)00180-1

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–51. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Berg B, Müller M, Wessén B (1987) Decomposition of red clover (Trifolium pratense) roots. Soil Biol Biochem 19:589–593

  • Blanco-Canqui H, Lal R (2009) Crop residue removal impacts on soil productivity and environmental quality. Crit Rev Plant Sci 2689:139–163. https://doi.org/10.1080/07352680902776507

  • Bolinder MA, Janzen HH, Gregorich EG, Angers DA, VandenBygaart AJ (2007) An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric Ecosyst Environ 118:29–42

    Article  Google Scholar 

  • Bonanomi G, Incerti G, Giannino F, Mingo A, Lanzotti V, Mazzoleni S (2013) Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and lignin/N ratios. Soil Biol Biochem 56:40–48. https://doi.org/10.1016/j.soilbio.2012.03.003

  • Brennan EB, Acosta-Martinez V (2017) Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biol Biochem 109:188–204. https://doi.org/10.1016/j.soilbio.2017.01.014

    Article  CAS  Google Scholar 

  • Brown KH, Bach EM, Drijber RA, Hofmockel KS, Jeske ES, Sawyer JE, Castellano MJ (2014) A long-term nitrogen fertilizer gradient has little effect on soil organic matter in a high-intensity maize production system. Glob Chang Biol 20:1339–1350. https://doi: 10.1111/gcb.12519

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, de Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L (2018) Soil quality – a critical review. Soil Biol Biochem 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

    Article  CAS  Google Scholar 

  • Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J (2015) Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Chang Biol 21:3200–3209

    Article  Google Scholar 

  • Cates AM, Ruark MD, Hedtcke JL, Posner JL (2016) Long-term tillage, rotation and perennialization effects on particulate and aggregate soil organic matter. Soil Tillage Res 155:371–380. https://doi.org/10.1016/j.still.2015.09.008

    Article  Google Scholar 

  • Chivenge P, Vanlauwe B, Gentile R, Six J (2011) Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biol Biochem 43:657–666. https://doi.org/10.1016/j.soilbio.2010.12.002

    Article  CAS  Google Scholar 

  • Congreves KA, Smith JM, Németh DD, Hooker DC, van Eerd LL (2014) Soil organic carbon and land use: processes and potential in Ontario’s long-term agro-ecosystem research sites. Can J Soil Sci 94:317–336. https://doi.org/10.4141/cjss2013-094

    Article  CAS  Google Scholar 

  • Córdova SC, Olk DC, Dietzel RN, Mueller KE, Archontouilis SV, Castellano MJ (2018) Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter. Soil Biol Biochem 125:115–124. https://doi.org/10.1016/j.soilbio.2018.07.010

    Article  CAS  Google Scholar 

  • R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995

    Article  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779

    Article  CAS  Google Scholar 

  • Cyle KT, Hill N, Young K, Jenkins T, Hancock D, Schroeder PA, Thompson A (2016) Substrate quality influences organic matter accumulation in the soil silt and clay fraction. Soil Biol Biochem 103:138–148. https://doi.org/10.1016/j.soilbio.2016.08.014

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327. https://doi.org/10.1111/j.1574-6941.2010.00860.x

    Article  CAS  PubMed  Google Scholar 

  • Elliott ET (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J 50:627–633

    Article  Google Scholar 

  • Elliott ET, Palm CA, Reuss DE, Monz CA (1991) Organic matter contained in soil aggregates from a tropical chronosequence: correction for sand and light fraction. Agric Ecosyst Environ 34:443–451

    Article  Google Scholar 

  • Fan J, McConkey B, Wang H, Janzen H (2016) Root distribution by depth for temperate agricultural crops. F Crop Res 189:68–74

    Article  Google Scholar 

  • Finney DM, White CM, Kaye JP (2016) Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agron J 108:39–52. https://doi.org/10.2134/agronj15.0182

  • Frankenberger WT, Abdelmagid HM (1985) Kinetic parameters of nitrogen mineralization rates of leguminous crops incorporated into soil. Plant Soil 87:257–271

  • Franzluebbers AJ (2002) Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res 66:95–106

    Article  Google Scholar 

  • Franzluebbers A, Langdale GW, Schomberg HH (1999) Soil carbon, nitrogen, and aggregation in response to type and frequency of tillage. Soil Sci Soc Am J 63:349–355

    Article  CAS  Google Scholar 

  • Gaudin ACM, Tolhurst TN, Ker AP, Janovicek K, Tortora C, Martin RC, Deen W (2015) Increasing crop diversity mitigates weather variations and improves yield stability. PlosONE 10:1–20. https://doi.org/10.1371/journal.pone.0113261

    Article  CAS  Google Scholar 

  • Grandy AS, Neff JC (2008) Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ 404:297–307

    Article  CAS  Google Scholar 

  • Gregorich EG, Drury CF, Baldock JA (2001) Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Can J Soil Sci 81:21–31

    Article  CAS  Google Scholar 

  • Gulde S, Chung H, Amelung W, Chang C, Six J (2008) Soil carbon saturation controls labile and stable carbon pool dynamics. Soil Sci Soc Am J 72:605–612

  • Gunnarsson S, Marstorp H, Dahlin AS, Witter E (2008) Influence of non-cellulose structural carbohydrate composition on plant material decomposition in soil. Biol Fertil Soils 27–36. https://doi.org/10.1007/s00374-008-0303-5

  • Haddix ML, Paul EA, Cotrufo MF (2016) Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter. Glob Chang Biol 22:2301–2312. https://doi.org/10.1111/gcb.13237

    Article  PubMed  Google Scholar 

  • Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839. https://doi.org/10.2135/cropsci2004.0238

  • Hirte J, Leifeld J, Abiven S, Oberholzer HR, Mayer J (2018) Below ground carbon inputs to soil via root biomass and rhizodeposition of field-grown maize and wheat at harvest are independent of net primary productivity. Agric Ecosyst Environ 265:556–566. https://doi.org/10.1016/j.agee.2018.07.010

    Article  Google Scholar 

  • Hooker BA, Morris TF, Peters R, Cardon ZG (2005) Long-term effects of tillage and corn stalk return on soil carbon dynamics. Soil Sci Soc Am J 69:188–196

    Article  CAS  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

  • Huang ZW, Zhao TJ, Gai JY (2009) Dynamic analysis of biomass accumulation and partition in different yield level soybeans. Acta Agron Sin 35:1483–1490. https://doi.org/10.1016/S1875-2780(08)60096-6

    Article  Google Scholar 

  • Huang X, Terrer C, Dijkstra FA, Hungate BA, Zhang W, van Groenigen KJ (2020) New soil carbon sequestration with nitrogen enrichment: a meta-analysis. Plant Soil 454:299–310. https://doi.org/10.1007/s11104-020-04617-x

    Article  CAS  Google Scholar 

  • Jian J, Du X, Reiter MS, Stewart RD (2020) A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol Biochem 143:107735. https://doi.org/10.1016/j.soilbio.2020.107735

    Article  CAS  Google Scholar 

  • John B, Yamashita T, Ludwig B, Flessa H (2005) Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128:63–79. https://doi.org/10.1016/j.geoderma.2004.12.013

    Article  CAS  Google Scholar 

  • Johnson JMF, Barbour NW, Weyers SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71:155–162

    Article  CAS  Google Scholar 

  • Johnston AE, Poulton PR, Coleman K (2009) Chapter 1 - soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. In: Advances in Agronomy. Elsevier Inc., pp. 1–57

  • Kaiser C, Cliff JB, Clode PL et al (2015) Exploring the transfer of recent plant photosynthates to soil microbes: Mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551. https://doi.org/10.1111/nph.13138

    Article  CAS  PubMed  Google Scholar 

  • Kallenbach CM, Grandy AS, Frey SD, Diefendorf AF (2015) Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol Biochem 91:279–290

    Article  CAS  Google Scholar 

  • Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:1–10. https://doi.org/10.1038/ncomms13630

    Article  CAS  Google Scholar 

  • Kätterer T, Bolinder MA, Andrén O, et al (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric Ecosyst Environ 141:184–192. https://doi.org/10.1016/j.agee.2011.02.029

  • King AE, Blesh J (2018) Crop rotations for increased soil carbon: perenniality as a guiding principle. Ecol Appl 28:249–261. https://doi.org/10.1002/eap.1648

    Article  PubMed  Google Scholar 

  • King AE, Congreves KA, Deen B, Dunfield KE, Voroney RP, Wagner-Riddle C (2019) Quantifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biol Biochem 135:95–107. https://doi.org/10.1016/j.soilbio.2019.04.019

  • King AE, Ali G, Gillespie AW, Wagner-Riddle C (2020) Soil organic matter as catalyst of crop resource capture. Front Environ Sci 8. https://doi.org/10.3389/fenvs.2020.00050

  • Kirk TK, Obst JR (1988) Lignin determination. In: Methods in Enzymology. pp. 87–101

  • Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82. https://doi.org/10.1002/jpln.200700048

    Article  CAS  Google Scholar 

  • Kong AYY, Six J, Bryant DC, Denison RF, van Kessel C (2005) The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci Soc Am J 69:1078–1085

    Article  CAS  Google Scholar 

  • Lambers JHR (2004) Mechanisms responsible for the positive diversity – productivity relationship in Minnesota grasslands. Ecol Lett 7:661–668. https://doi.org/10.1111/j.1461-0248.2004.00623.x

    Article  Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA et al (2014) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:1–8

    Google Scholar 

  • Lavallee JM, Conant RT, Paul EA, Cotrufo MF (2018) Incorporation of shoot versus root-derived 13C and 15N into mineral-associated organic matter fractions: results of a soil slurry incubation with dual-labelled plant material. Biogeochemistry 137:379–393. https://doi.org/10.1007/s10533-018-0428-z

  • Liang C, Lehmann J, Kästner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol 25:3578–3590. https://doi.org/10.1111/gcb.14781

    Article  PubMed  Google Scholar 

  • Liu C, Lu M, Cui J, Li B, Fang C (2014) Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Glob Chang Biol 20:1366–1381. https://doi.org/10.1111/gcb.12517

    Article  PubMed  Google Scholar 

  • Louarn G, Pereira-lopès E, Fustec J, Mary B (2015) The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality. Plant Soil 289–305. https://doi.org/10.1007/s11104-014-2354-8

  • Lutzow MV, Kogel-Knabner I, Ekschmitt K et al (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Mahal NK, Osterholz WR, Miguez FE, Poffenbarger HJ, Sawyer JE, Olk DC, Archontoulis SV, Castellano MJ (2019) Nitrogen fertilizer suppresses mineralization of soil organic matter in maize Agroecosystems. Front Ecol Evol 7. https://doi.org/10.3389/fevo.2019.00059.Rights

  • McDaniel MD, Tiemann LK, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dyanmics? A meta-analysis. Ecol Appl 24:560–570

    Article  CAS  Google Scholar 

  • Meyer-Aurich A, Janovicek K, Deen W, Weersink A (2006) Impact of tillage and rotation on yield and economic performance in corn-based cropping systems. Agron J 98:1204–1212. https://doi.org/10.2134/agronj2005.0262

    Article  Google Scholar 

  • Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56. https://doi.org/10.1007/s10533-005-0712-6

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174

    Article  Google Scholar 

  • Novelli LE, Caviglia OP, Piñeiro G (2017) Increased cropping intensity improves crop residue inputs to the soil and aggregate-associated soil organic carbon stocks. Soil Tillage Res 165:128–136. https://doi.org/10.1016/j.still.2016.08.008

    Article  Google Scholar 

  • Oldfield EE, Bradford MA, Wood SA (2018) Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL 5:15–32. https://doi.org/10.5194/soil-2018-21

    Article  Google Scholar 

  • OMAFRA (2017) Agronomy guide for field crops. Available: http://www.omafra.gov.on.ca/english/crops/pub811/p811toc.html. Accessed 30 Sept 2020

  • Pan G, Smith P, Pan W (2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric Ecosyst Environ 129:344–348. https://doi.org/10.1016/j.agee.2008.10.008

    Article  Google Scholar 

  • Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops: a meta-analysis. Agric Ecosyst Environ 200:33–41

    Article  CAS  Google Scholar 

  • Poffenbarger HJ, Olk DC, Cambardella C, Kersey J, Liebman M, Mallarino A, Six J, Castellano MJ (2020) Whole-profile soil organic matter content, composition, and stability under cropping systems that differ in belowground inputs. Agric Ecosyst Environ 291:106810. https://doi.org/10.1016/j.agee.2019.106810

    Article  CAS  Google Scholar 

  • Poirier V, Roumet C, Munson AD (2018) The root of the matter: linking root traits and soil organic matter stabilization processes. Soil Biol Biochem 120:246–259. https://doi.org/10.1016/j.soilbio.2018.02.016

    Article  CAS  Google Scholar 

  • Pordesimo LO, Edens WC, Sokhansanj S (2004) Distribution of aboveground biomass in corn stover. Biomass Bioenergy 26:337–343. https://doi.org/10.1016/S0961-9534(03)00124-7

  • Puget P, Drinkwater LE (2001) Short-term dynamics of root- and shoot-derived carbon from a leguminous green manure. Soil Sci Soc Am J 65:771–779

    Article  CAS  Google Scholar 

  • Pugliese JY, Culman SW, Sprunger CD (2019) Harvesting forage of the perennial grain crop kernza (Thinopyrum intermedium) increases root biomass and soil nitrogen. Plant Soil 437:241–254. https://doi.org/10.1007/s11104-019-03974-6

  • Purakayastha TJ, Rudrappa L, Singh D, Swarup A, Bhadraray S (2008) Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize – wheat – cowpea cropping system. Geoderma 144:370–378. https://doi.org/10.1016/j.geoderma.2007.12.006

    Article  CAS  Google Scholar 

  • Rasmussen PE, Allmaras RR, Rohde CR, Roager NCJ (1980) Crop residue influence on soil carbon and nitrogen in a wheat-fallow system. Soil Sci Soc Am J 44:596–600

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Redin M, Guénon R, Recous S, Schmatz R, de Freitas LL, Aita C, Giacomini SJ (2014) Carbon mineralization in soil of roots from twenty crop species, as affected by their chemical composition and botanical family. Plant Soil 378:205–214. https://doi.org/10.1007/s11104-013-2021-5

    Article  CAS  Google Scholar 

  • Ruis SJ, Blanco-Canqui H (2017) Cover crops could offset crop residue removal effects on soil carbon and other properties: a review. Agron J 109:1785–1805. https://doi.org/10.2134/agronj2016.12.0735

    Article  CAS  Google Scholar 

  • Russell AE, Cambardella CA, Laird DA et al (2009) Nitrogen fertilizer effects on soil carbon balances in Midwestern U.S. agricultural systems. Ecol Appl 19:1–13

    Article  Google Scholar 

  • Russell A, Love J, Buerkner P, et al (2018) Package ‘emmeans’. 34:216–221. https://doi.org/10.1080/00031305.1980.10483031

  • Sainju UM, Caesar-TonThat T, Lenssen AW, Evans RG, Kolberg R (2007) Long-term tillage and cropping sequence effects on dryland residue and soil carbon fractions. Soil Sci Soc Am J 71:1730–1739. https://doi.org/10.2136/sssaj2006.0433

  • Sarker TC, Incerti G, Spaccini R, Piccolo A, Mazzoleni S, Bonanomi G (2018) Linking organic matter chemistry with soil aggregate stability: insight from 13C NMR spectroscopy. Soil Biol Biochem 117:175–184. https://doi.org/10.1016/j.soilbio.2017.11.011

  • Simpson MJ, Otto A, Feng X (2008) Comparison of solid-state Carbon-13 nuclear magnetic resonance and organic matter biomarkers for assessing soil organic matter degradation. Soil Sci Soc Am J 72:268–276. https://doi.org/10.2136/sssaj2007.0045

    Article  CAS  Google Scholar 

  • Simpson AJ, Simpson MJ, Soong R (2012) Nuclear magnetic resonance spectroscopy and its key role in environmental research. Environ Sci Technol 46:11488–11496. https://doi.org/10.1021/es302154w

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Ghoshal N, Singh KP (2007) Variations in soil microbial biomass and crop roots due to differing resource quality inputs in a tropical dryland agroecosystem. Soil Biol Biochem 39:76–86. https://doi.org/10.1016/j.soilbio.2006.06.013

    Article  CAS  Google Scholar 

  • Six J, Paustian K (2014) Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol Biochem 68:A4–A9

    Article  CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62:1367–1377. https://doi.org/10.2136/sssaj1998.03615995006200050032x

    Article  CAS  Google Scholar 

  • Six J, Schultz PA, Jastrow JD, Merckx R (1999) Recycling of sodium polytungstate used in soil organic matter studies. Soil Biol Biochem 31:1193–1196

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol 32:2099–2013

    Article  CAS  Google Scholar 

  • Soil Classification Working Group (1998) The canadian system of soil classification:187

  • Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2018) Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol 221:233–246. https://doi.org/10.1111/nph.15361

    Article  CAS  PubMed  Google Scholar 

  • Sokol NW, Sanderman J, Bradford MA (2019) Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry. Glob Chang Biol 1–13. https://doi.org/10.1111/gcb.14482

  • Spohn M, Potsch EM, Eichorst SA et al (2016) Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol Biochem 97:168–175. https://doi.org/10.1016/j.soilbio.2016.03.008

  • Tiemann LK, Grandy AS, Atkinson EE et al (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett:1–10. https://doi.org/10.1111/ele.12453

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J et al (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

  • Trinsoutrot I, Recous S, Bentz B et al (2000) Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions. Soil Biol Biochem 64:918–926

    CAS  Google Scholar 

  • Virto I, Barré P, Burlot A, Chenu C (2012) Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108:17–26. https://doi.org/10.1007/s10533-011-9600-4

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Article  Google Scholar 

  • Wang X, Tang C, Severi J, Butterly CR, Baldock JA (2016) Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol 211:864–873

    Article  CAS  Google Scholar 

  • Widdig M, Schleuss P, Biederman LA et al (2020) Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biol Biochem 146:107815. https://doi.org/10.1016/j.soilbio.2020.107815

    Article  CAS  Google Scholar 

  • Wivstad M (1999) Nitrogen mineralization and crop uptake of N from decomposing 15N labelled red clover and yellow sweetclover plant fractions of different age. Plant Soil 208:21–31

  • WRB UWG (2006) World reference base for soil resources: world soil resources reports v103. Rome

  • Yang Y, Tilman D, Furey G, Lehman C (2019) Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat Commun 10:1–7. https://doi.org/10.1038/s41467-019-08636-w

    Article  CAS  Google Scholar 

  • Zang H, Wang J, Kuzyakov Y (2016) N fertilization decreases soil organic matter decomposition in the rhizosphere. Appl Soil Ecol 108:47–53. https://doi.org/10.1016/j.apsoil.2016.07.021

    Article  Google Scholar 

  • Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, de Deyn GB, Flynn DFB (2014) Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515:108–111. https://doi.org/10.1038/nature13869

Download references

Acknowledgements

We thank Alyssa Matheson for assistance with sample processing and Sean Jordan and Kamini Khosla for providing equipment. Meiling Man and Lori vandenEnden provided guidance with solid-state 13C NMR analyses, and Rebecca Johnson and three anonymous reviewers gave helpful feedback on the manuscript. This work was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada with a Strategic Grant [STPGP 494224-16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison E. King.

Additional information

Responsible Editor: Simon Jeffery.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, A.E., Congreves, K.A., Deen, B. et al. Crop rotations differ in soil carbon stabilization efficiency, but the response to quality of structural plant inputs is ambiguous. Plant Soil 457, 207–224 (2020). https://doi.org/10.1007/s11104-020-04728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04728-5

Keywords

Navigation