Skip to main content

Advertisement

Log in

Distinct factors drive the assembly of quinoa-associated microbiomes along elevation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Unravelling the factors shaping microbial community structure across plant holobiont is required to promote plant health and crop productivity.

Methods

We compared microbial communities in soils and plant compartments of two contrasting quinoa cultivars, grown in low-input cropping systems along an elevation gradient in northwest Yunnan plateau, China.

Results

With a compartment-dependent effect, alpha-diversity (Shannon and Chao1 indices) of both bacterial and fungal communities generally increased with increasing elevation. Both bacterial and fungal diversities decreased in the order of rhizosphere> root > leaf, but no significant difference was found between two plant genotypes or between bulk soil and rhizosphere. Representing a unique niche for microbial communities, leaf had a much stronger selection effect than root. With insignificant effect of plant genotype, local environmental filtering (i.e. climate, edaphic and plant traits) could have played an important role in structuring soil microbial communities, but they were weak for root and leaf endophytes, except for root fungi. The relative importance of stochastic and deterministic processes in bacterial or fungal communities varied with the elevational scale, showing contrasting patterns within each plant-associated compartment, except for leaf (determinism).

Conclusions

The revealed distinct drives in determining the community assembly in quinoa-associated microbes are thought to be essential for underpinning plant–microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237

    PubMed  CAS  Google Scholar 

  • Bai Y, Müller DB, Srinivas G et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    PubMed  CAS  Google Scholar 

  • Beckers B, Op De Beeck M, Weyens N, Van Acker R, Van Montagu M, Boerjan W, Vangronsveld J (2016) Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc Natl Acad Sci U S A 113:2312–2317

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bonito G, Op De Beeck M, Weyens N et al (2014) Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Molec Ecol 23:3356–3370

    Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    PubMed  CAS  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    PubMed  CAS  Google Scholar 

  • Cai ZQ, Zhang YH, Yang C, Wang S (2018) Land-use type strongly shapes community composition, but not always diversity of soil microbes in tropical China. Catena 165:369–380

    CAS  Google Scholar 

  • Chen L, Brookes PC, Xu J, Zhang J, Luo Y (2016) Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biol Biochem 98:1–10

    CAS  Google Scholar 

  • Coince A, Cordier T, Lengellé J, Defossez E, Vacher C, Robin C, Buée M, Marçais B (2014) Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS One 9:e100668

    PubMed  PubMed Central  Google Scholar 

  • Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811

    PubMed  CAS  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellın C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:E911–E920

    PubMed  PubMed Central  CAS  Google Scholar 

  • Emmett BD, Buckley DH, Smith ME, Drinkwater LE (2018) Eighty years of maize breeding alters plant nitrogen acquisition but not rhizosphere bacterial community composition. Plant Soil 431:53–69

    CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    PubMed  PubMed Central  CAS  Google Scholar 

  • Glassman SI, Wang IJ, Bruns TD (2017) Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Molec Ecol 26:6960–6973

    CAS  Google Scholar 

  • Gómez-Muñoz B, Jensen LS, de Neergaard A, Richardson AE, Magid J (2018) Effects of Penicillium bilaii on maize growth are mediated by available phosphorus. Plant Soil 431:159–173

    Google Scholar 

  • González-Teuber M, Vilo C, Bascuñán-Godoy L (2017) Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genomics Data 11:109–112

    PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Molec Biol Rev 79:293–320

    Google Scholar 

  • Hendershot JN, Read QD, Henning JA, Sanders NJ, Classen AT (2017) Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98:1757–1763

    PubMed  Google Scholar 

  • Hijri I, Sýkorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molec Ecol 15:2277–2289

    CAS  Google Scholar 

  • Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Internat 19:99–109

    Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ et al (2017) The genome of Chenopodium quinoa. Nature 542:307–312

    PubMed  CAS  Google Scholar 

  • Jiang J, Yu M, Hou R, Li L, Ren X, Jiao C, Yang L, Xu H (2019) Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases. Plant Soil 438:143–156

    CAS  Google Scholar 

  • Korner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    PubMed  Google Scholar 

  • Leitão AL, Enguita FJ (2016) Gibberellins in Penicillium strains: challenges for endophyte-plant host interactions under salinity stress. Microbiol Res 183:8–18

    PubMed  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio T, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Garcia LB, De Deyn GB, Pugnaire FI, Kothamasi D, van der Heijden MGA (2017) Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob Chang Biol 23:5228–5236

    PubMed  PubMed Central  Google Scholar 

  • Nottingham AT, Fierer N, Turner BL, Whitaker J, Ostle NJ, McNamara N, Bardgett RD, Leff JW, Salinas N, Silman MR, Kruuk LEB, Meir P (2018) Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99:2455–2466

    PubMed  PubMed Central  Google Scholar 

  • Pang C, Zhang Z, Zhang Y (2017) Effects of water and phosphorus coupling on root growth, biomass allocation and yield of quinoa. Sci Agric Sin 50:4107–4117

    Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pitzschke A (2016) Developmental peculiarities and seed-borne endophytes in quinoa: omnipresent, robust bacilli contribute to plant fitness. Front Microbiol 7:2

    PubMed  PubMed Central  Google Scholar 

  • Pitzschke A (2018) Molecular dynamics in germinating, endophyte-colonized quinoa seeds. Plant Soil 422:135–154

    PubMed  CAS  Google Scholar 

  • Ruiz KB, Biondi S, Oses R et al (2014) Quinoa biodiversity and sustainability for food security under climate change a review. Agron Sustain Develop 34:349–359

    Google Scholar 

  • Siciliano SD, Palmer AS, Winsley T et al (2014) Soil fertility is associated with fungal and bacterial rich- ness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem 78:10–20

    CAS  Google Scholar 

  • Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, de Jonge R, van Bentum S, van Verk M, Berendsen RL, Bakker PAHM, Feussner I, Pieterse CMJ (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci U S A 115:E5213–E5222

    PubMed  PubMed Central  CAS  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50

    Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    PubMed  Google Scholar 

  • Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XB, Lü X, Yao J, Wang Z, Deng Y, Cheng W, Zhou J, Han X (2017) Habitat-specific patterns and drivers of bacterial β-diversity in China's drylands. ISME J 11:1345–1358

    PubMed  PubMed Central  Google Scholar 

  • Whitaker BK, Reynolds HL, Clay K (2018) Foliar fungal endophyte communities are structured by environment but not host ecotype in Panicum virgatum (switchgrass). Ecology 99:2703–2711

    PubMed  PubMed Central  Google Scholar 

  • Xu XF, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial eco- systems. Glob Ecol Biogeogr 22:737–749

    Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P et al (2015) The soil microbiome influences grapevine-associated microbiota. MBio 6:e02527–e02514

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Public Technology Service Center of Xishuangbanna Tropical Botanical Garden for the soil physico-chemical measurements, Hongchun Fan and Chun Wang for their data analysis, and Yongjian Liu and Bin Zhang for their comments on the early draft. I also would like to thank Ioannis Stringlis, Gilles Vismans, and another three anonymous reviewers who helped to improve this paper substantially. This work was supported by the grants from the National Natural Science Foundation of China (31670686) and the ‘135’ Program of Chinese Academy of Sciences (2017XTBG-T02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiquan Cai.

Additional information

Responsible Editor: Anna Maria Pirttila.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 6823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Wang, X., Bhadra, S. et al. Distinct factors drive the assembly of quinoa-associated microbiomes along elevation. Plant Soil 448, 55–69 (2020). https://doi.org/10.1007/s11104-019-04387-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04387-1

Keywords

Navigation