Skip to main content
Log in

Transcriptome analysis of Medicago lupulina seedlings leaves treated by high calcium provides insights into calcium oxalate formation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aim

Calcium oxalate (CaOx) is a common biomineral found in the plant kingdom. Crystals of CaOx occur in different plant tissues, such as leaves and stems. However, little is known about the biosynthesis of CaOx in oxalate-accumulating plants. Moreover, the literature on genes related to CaOx formation under high-calcium environment is scarce. In the present study, the physiological parameters and the transcript profiles of Medicago lupulina leaves treated with 0.1 and 25 mM Ca2+ were analyzed to study the genes involved in the biosynthesis of CaOx.

Results

We demonstrated that exposure to high external calcium concentration induced H2O2 production, ascorbic acid degradation, and CaOx accumulation in M. lupulina leaves. Moreover, we identified 1715 differentially expressed genes (DEGs) (1322 up-regulated and 393 down-regulated genes) in leaves treated with 25 mM Ca2+ compared with the leaves treated with 0.1 mM Ca2+. We further demonstrated the involvement of DEGs in oxalic acid production, calcium transport, and calcium buffering. These results revealed that a high calcium promoted oxalic acid biosynthesis by inducing the expression of NADPH oxidase and ascorbate oxidase genes. In addition, several genes encoding cyclic nucleotide-gated channel, Ca2+-ATPase, H+/Ca2+ exchangers, and calcium-binding proteins were found to be differentially expressed and involved in calcium transport and calcium buffering.

Conclusion

Our transcriptome analyses provide a comprehensive insight into the biosynthesis of CaOx in oxalate-accumulating plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bafeel SO, Ibrahim MM (2008) Antioxidants and accumulation of α-tocopherol induce chilling tolerance in Medicago sativa. Int J Agric Biol 10:1560–8530

    Google Scholar 

  • Ben Rejeb K, Lefebvre-De Vos D, Disquet IL, Leprince AS, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savouré A (2015) Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. New Phytol 208:1138–1148

    Article  CAS  PubMed  Google Scholar 

  • Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 85:1–17

    Google Scholar 

  • Cervantes-Martinez T, Horner HT, Palmer RG, Hymowitz T, Ahd B (2005) Calcium oxalate crystal macropatterns in leaves of species from groups Glycine and Shuteria (Glycininae; Phaseoleae; Papilionoideae; Fabaceae). Can J Bot 83:1410–1421

    Article  CAS  Google Scholar 

  • Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, Cheng NH, Stancombe MA, Hirschi KD, Webb AA (2011) Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23:240–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daudi A, Cheng Z, O’Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24:275–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fotopoulos V, Sanmartin M, Kanellis AK (2006) Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. J Exp Bot 57:3933–3943

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR (1989) Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148:130–137

    Article  Google Scholar 

  • Franceschi VR (2001) Calcium oxalate in plants. Trends Plant Sci 6:331–331

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR, Li X, Zhang DZ, Okita TW (1993) Calsequestrinlike calcium-binding protein is expressed in calcium-accumulating cells of Fistia stratiotes. Proc Natl Acad Sci 90:6986–6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallaher RN (1975) The occurrence of calcium in plant tissue as crystals of calcium oxalate. Commun Soil Sci Plant Anal 6:315–330

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Xian A, Fan L, Raychowdhury R, Zeng Q (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433:83–87

    Article  CAS  PubMed  Google Scholar 

  • Hao Z, Kuang Y, Kang M, Niu S (2015) Untangling the influence of phylogeny, soil and climate on leaf element concentrations in a biodiversity hotspot. Funct Ecol 29:165–176

    Article  Google Scholar 

  • He H, Veneklaas EJ, Kuo J, Lambers H (2014) Physiological and ecological significance of biomineralization in plants. Trends Plant Sci 19:166–174

    Article  CAS  PubMed  Google Scholar 

  • Horner HT, Wagner BL (1995) Calcium oxalate formation in higher plants. In: Khan S (ed) Calcium oxalate in biological systems. CRC Press, Boca Raton, pp 53–72

    Google Scholar 

  • Horner HT, Kausch AP, Wagner BL (2000) Ascorbic acid: a precursor of oxalate in crystal idioblasts of Yucca torreyi in liquid root culture. Int J Plant Sci 161(6):861–868

    Article  CAS  Google Scholar 

  • Horner HT, Wanke S, Samain MS (2012) A comparison of leaf crystal macropatterns in the two sister genera Piper and Peperomia (Piperaceae). Am J Bot 99:983–997

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Wang W, Peck A, Khan S, Gainesville FL (2013) Differential gene expression in rat kidneys in response to oxalate and calcium oxalate crystals: a transcriptional study. J Urol 189:e854–e855

    Article  Google Scholar 

  • Joshi S, Wang W, Khan SR (2017) Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: inflammatory changes are mainly associated with crystal deposition. PLoS One 12:1–21

    Google Scholar 

  • Kausch AP, Horner HT (1985) Absence of CeCl3-detectable peroxisomal glycolate-oxidase activity in developing raphide crystal idioblasts in leaves of Psychotria punctata Vatke and roots of Yucca torreyi L. Planta 164:35–43

    Article  CAS  PubMed  Google Scholar 

  • Keates SE, Tarlyn NM, Loewus FA, Franceschi VR (2000) L-ascorbic acid and L-galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes. Phytochem 53:433–440

    Article  CAS  Google Scholar 

  • Km G, Ea A (2007) Measurement of reduced, oxidized and total ascorbate content in plants. Nat Protoc 2:871–874

    Article  CAS  Google Scholar 

  • Kostman TA, Tarlyn NM, Loewus FA, Franceschi VR (2001) Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol 125:634–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostman TA, Franceschi VR, Nakata PA (2003) Endoplasmic reticulum sub-compartments are involved in calcium sequestration within raphide crystal idioblasts of Pistia stratiotes. Plant Sci 165:205–212

    Article  CAS  Google Scholar 

  • Lersten NR, Horner HT (2009) Crystal diversity and macropatterns in leaves of Oleaceae. Plant Syst Evol 282:87–102

    Article  CAS  Google Scholar 

  • Li X, Zhang D, Lynch-Holm VJ, Okita TW, Franceschi VR (2003) Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. Plant Physiol 133:549–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libert B, Franceschi VR (1987) Oxalate in crop plants. J Agric Food Chem 35:926–938

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2012) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Loewus FA, Franceschi VR (2001) Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol 125:634–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot 63:305–317

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Meyer S, Angeli AD, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–213

    Article  CAS  PubMed  Google Scholar 

  • Mazen AMA, Zhang D, Franceschi VR (2004) Calcium oxalate formation in Lemna minor: physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytol 161:435–448

    Article  CAS  PubMed  Google Scholar 

  • Mcconn MM, Nakata PA (2002) Calcium oxalate crystal morphology mutants from Medicago truncatula. Planta 215:380–386

    Article  CAS  PubMed  Google Scholar 

  • Minocha R, Chamberlain B, Long S, Turlapati SA, Quigley G (2015) Extraction and estimation of the quantity of calcium oxalate crystals in the foliage of conifer and hardwood trees. Tree Physiol 35:574–580

    Article  PubMed  Google Scholar 

  • Minoru K, Susumu G, Shuichi K, Yasushi O, Masahiro H (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  Google Scholar 

  • Monje PV, Baran EJ (2002) Characterization of calcium oxalates generated as biominerals in cacti. Plant Physiol 128:707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164:901–909

    Article  CAS  Google Scholar 

  • Nakata PA (2012) Engineering calcium oxalate crystal formation in Arabidopsis. Plant Cell Physiol 53:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Nakata PA, Mcconn MM (2000) Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation. Plant Physiol 124:1097–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata PA, Mcconn MM (2003) Influence of the calcium oxalate defective 4 (cod4) mutation on the growth, oxalate content, and calcium content of Medicago truncatula. Plant Sci 164:617–621

    Article  CAS  Google Scholar 

  • Nakata PA, Mcconn MM (2007) Genetic evidence for differences in the pathways of druse and prismatic calcium oxalate crystal formation in Medicago truncatula. Funct Plant Biol 34:332–338

    Article  CAS  PubMed  Google Scholar 

  • Nakata PA, Kostman TA, Franceschi VR (2003) Calreticulin is enriched in the crystal idioblasts of Pistia stratiotes. Plant Physiol Biochem 41:425–430

    Article  CAS  Google Scholar 

  • Nuss RF, Loewus FA (1978) Further studies on oxalic acid biosynthesis in oxalate-accumulating plants. Plant Physiol 61:590–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada A, Yasui T, Hamanoto S, Hirose M, Kubota Y, Itoh Y, Tozawa K, Hayashi Y, Kohri K (2010) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908–924

    Article  Google Scholar 

  • Parsons HT, Fry SC (2012) Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. Phytochem 75:41–49

    Article  CAS  Google Scholar 

  • Parsons HT, Yasmin T, Fry SC (2011) Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem J 440:375–383

    Article  CAS  PubMed  Google Scholar 

  • Patricia W, Klaus P, Barbara K, Annette K, Petra D (2009) Salt-dependent regulation of a CNGC channel subfamily in Arabidopsis. BMC Plant Biol 9:1–11

    Article  CAS  Google Scholar 

  • Pierantoni M, Tenne R, Rephael B, Brumfeld V, Van AC, Kupczik K, Oron D, Addadi L, Weiner S (2018) Mineral deposits in ficus leaves: morphologies and locations in relation to function. Plant Physiol 176:1751–1763

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol 141:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittman JK, Hirschi KD (2016) CAX-ing a wide net: cation/H+ transporters in metal remediation and abiotic stress signalling. Plant Biol 18:741–749

    Article  CAS  PubMed  Google Scholar 

  • Pruitt KD, Tatusova T, Maglott DR (2005) NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–D504

    Article  CAS  PubMed  Google Scholar 

  • Smith RK, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728–731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun YL, Zhang DH, Zhao L, Xia CC, Min-Xia C (2014) Reference gene selection for real-time quantitative PCR in black medic (Medicago lupulina L.) root tissue under copper stress. J Agricul Biotechnol 22:1223–1231

    CAS  Google Scholar 

  • Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Biol 51:433–462

    Article  CAS  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tooulakou G, Giannopoulos A, Nikolopoulos D, Bresta P, Dotsika E, Orkoula MG, Kontoyannis CG, Fasseas C, Liakopoulos G, Klapa MI (2016) Alarm photosynthesis: calcium oxalate crystals as an internal CO2 source in plants. Plant Physiol 171:2577–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truffault V, Fry SC, Stevens RG, Gautier H (2016) Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate. Plant J 89:996–1008

    Article  CAS  Google Scholar 

  • Volk GM, Lynch-Holm VJ, Kostman TA, Goss LJ, Franceschi VR (2002) The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol 4:34–45

    Article  CAS  Google Scholar 

  • Volk GM, Goss LJ, Franceschi VR (2004) Calcium channels are involved in calcium oxalate crystal formation in specialized cells of Pistia stratiotes L. Ann Bot 93:741–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang WH, Yi XQ, Han AD, Liu TW, Chen J, Wu FH, Dong XJ, He JX, Pei ZM, Zheng HL (2012) Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot 63:177–190

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kang Y, Ma C, Miao R, Wu C, Long Y, Ge T, Wu Z, Hou X, Zhang J, Qi Z (2017) CNGC2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf. Plant Physiol 173:1342–1354

    Article  CAS  PubMed  Google Scholar 

  • Webb MA (1999) Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11:751–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb MA, Cavaletto JM, Carpita NC, Lopez LE, Arnott HJ (1995) The intravacuolar organic matrix associated with calcium oxalate crystals in leaves of Vitis. Plant J 7:633–648

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu L, Jiang J, Zhang C, Jiang L, Ye N, Lu Y, Yang G, Liu E, Peng C, He Z, Peng X (2010) Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J Exp Bot 61:1625–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelman AK, Dawe A, Gehring C, Berkowitz GA (2012) Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci 3:1–13

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Joint Fund of the Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province (Grant No. U1812401), the Programme for Changjiang Scholars and Innovative Research Teams in Universities (PCSIRT–1227), the Initial Fund for Key Laboratory of Guizhou Province (2011-4005), the Major Science and Technology Project of the Education Department of Guizhou Province during the “12th Five-year Plan” (2012-005), the Joint Fund for the Department of Science and Technology of Guizhou Province and Guizhou Normal University ([2016]7209, [2016]7210), the National Key Research and Development Program of China (2017YFC0506102), and the Natural Science Foundation of China (NSFC) (31570586, 31870581).

Author information

Authors and Affiliations

Authors

Contributions

X. M. Z. designed the experiments. X. M. Z., L. X. L. and Z. M. S performed the experiments. Z. J. S. and G. F. G. analyzed transcriptome data. X. M. Z. wrote the paper. Y. Y. and H. L. Z. revised this paper. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Yin Yi or Hai-Lei Zheng.

Ethics declarations

Competing financial interests

We declare no competing financial interests.

Additional information

Responsible Editor: Honghua He.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XM., Liu, LX., Su, ZM. et al. Transcriptome analysis of Medicago lupulina seedlings leaves treated by high calcium provides insights into calcium oxalate formation. Plant Soil 444, 299–314 (2019). https://doi.org/10.1007/s11104-019-04283-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04283-8

Keywords

Navigation