Skip to main content

Advertisement

Log in

The effects of simulated deposited nitrogen on nutrient dynamics in decomposing litters across a wide quality spectrum using a 15N tracing technique

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Nitrogen (N) deposition affects litter decomposition. However, how nutrients, especially deposited N are immobilized and released in decomposing litters with different qualities (C/N and C/P) remains unclear.

Methods

We conducted a laboratory microcosm experiment with four litter types and a combination of a coniferous and deciduous litter treated with N addition (6 mg 99.99% 15N g−1 litter) and control by measuring N-deposition effect on mass (NDEM), N (NDEN), and P remaining percentages (NDEP), deposited 15N immobilized abundance, and microbial composition and enzyme activities in decomposing litters during two years of incubation.

Results

The values of NDEM, NDEN, and NDEP were generally greater for the litters with intermediate C/N and C/P than those with the highest and lowest ratios after 360 days, although these parameters varied among different quality litters before 180 days. Immobilized exogenous 15N abundance by microbes showed an increasing trend with increasing litter C/N and C/P across the whole 720-day period. Both C/N and C/P were generally correlated with decomposition rate, 15N immobilization abundance, the microbial richness, and main enzyme activities in decomposing litters.

Conclusions

N-deposition effects on N and P dynamics in decomposing litters varied with their C/N and C/P, generally exerting an unimodal curve at later decomposition stages. Lower quality litter with higher C/N and C/P favoured N immobilization in response to N addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Agren GI, Hyvonen R, Berglund SL, Hobbie SE (2013) Estimating the critical N:C from litter decomposition data and its relation to soil organic matter stoichiometry. Soil Biol Biochem 67:312–318

    Article  CAS  Google Scholar 

  • Ameur D, Zehetner F, Johnen S, Jöchlinger L, Pardeller G, Wimmer B, Rosner F, Faber F, Dersch G, Zechmeister-Boltenstern S, Mentler A, Soja G, Keiblinger KM (2018) Activated biochar alters activities of carbon and nitrogen acquiring soil enzymes. Pedobiologia 69:1–10

    Article  Google Scholar 

  • Averill C, Waring B (2018) Nitrogen limitation of decomposition and decay: how can it occur? Glob Chang Biol 24:1417–1427

    Article  Google Scholar 

  • Bardgett RD, Hobbs PJ, Frostegard A (1996) Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fert Soils 22:261–264

    Article  Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation. In: Carbon Sequestration, 2nd edn. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Berg B, Berg M, Bottner P, Box E, Breymeyer A, De Anta RC, Couteaux M, Escudero A, Gallardo A, Kratz W (1993) Litter mass loss rates in pine forests of Europe and eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159

    Article  Google Scholar 

  • Berg B, Steffen KT, McClaugherty C (2007) Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 82:29–39

    Article  CAS  Google Scholar 

  • Bosatta E, Berendse F (1984) Energy or nutrient regulation of decomposition - implications for the mineralization immobolization response to perturbations. Soil Biol Biochem 16:63–67

    Article  CAS  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12

    Article  CAS  PubMed  Google Scholar 

  • Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2016) Understanding the dominant controls on litter decomposition. J Ecol 104:229–238

    Article  CAS  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Chen FS, Feng X, Liang C (2012) Endogenous versus exogenous nutrient affects C, N, and P dynamics in decomposing litters in mid-subtropical forests of China. Ecol Res 27:923–932

    Article  CAS  Google Scholar 

  • Chen H, Li D, Zhao J, Zhang W, Xiao K, Wang K (2018) Nitrogen addition aggravates microbial carbon limitation: evidence from ecoenzymatic stoichiometry. Geoderma 329:61–64

    Article  CAS  Google Scholar 

  • Chen FS, Wang GG, Fang XM, Wang SZ, Zhang Y, Liang C (2019) Nitrogen deposition effect on forest litter decomposition is interactively regulated by endogenous litter quality and exogenous resource supply. Plant Soil 437:413–426

    Article  CAS  Google Scholar 

  • Cheshire MV, Bedrock CN, Williams BL, Chapman SJ, Solntseva I, Thomsen I (1999) The immobilization of nitrogen by straw decomposing in soil. Eur J Soil Sci 50:329–341

    Article  Google Scholar 

  • Cornelissen JHC, Sibma F, Van Logtestijn RS, Broekman RA, Thompson K (2011) Leaf pH as a plant trait: species-driven rather than soil-driven variation. Funct Ecol 25:449–455

    Article  Google Scholar 

  • Dong WY, Zhang XY, Liu XY, Fu XL, Chen FS, Wang HM, Sun XM, Wen XF (2015) Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China. Biogeosciences 12:5537–5546

    Article  Google Scholar 

  • Downs MR, Nadelhoffer KJ, Melillo JM, Aber JD (1996) Immobilization of a N-15-labeled nitrate addition by decomposing forest litter. Oecologia 105:141–150

    Article  PubMed  Google Scholar 

  • Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943

    Article  Google Scholar 

  • Enriquez S, Duarte CM, Sandjensen K (1993) Patterns in decomposition rates among rates among photosynthetic organisms: the importance of detritus C-N-P content. Oecologia 94:457–471

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Article  Google Scholar 

  • Finn D, Page K, Catton K, Strounina E, Kienzle M, Robertson F, Armstrong R, Dalal R (2015) Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry. Soil Biol Biochem 91:160–168

    Article  CAS  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gusewell S, Gessner MO (2009) N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219

    Article  Google Scholar 

  • Harmon ME, Silver WL, Fasth B, Chen H, Burke IC, Parton WJ, Hart SC, Currie WS, LIDET (2009) Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Chang Biol 15:1320–1338

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • He P, Wan SZ, Fang XM, Wang FC, Chen FS (2016) Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition. Sci Rep 6:23717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 15:644–656

    Article  CAS  Google Scholar 

  • Hobbie SE (2008) Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89:2633–2644

    Article  PubMed  Google Scholar 

  • Hobbie SE, Vitousek PM (2000) Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–1877

    Article  Google Scholar 

  • Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Monogr 82:389–405

    Article  Google Scholar 

  • Hou SL, Yin JX, Yang JJ, Wei HW, Yang GJ, Hu YY, Han XG, Lu XT (2017) Consistent responses of litter stoichiometry to N addition across different biological organization levels in a semi-arid grassland. Plant Soil 421:191–202

    Article  CAS  Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322

    Article  CAS  Google Scholar 

  • Jiang X, Cao L, Zhang R, Yan L, Mao Y, Yang Y (2014) Effects of nitrogen addition and litter properties on litter decomposition and enzyme activities of individual fungi. Appl Soil Ecol 80:108–115

    Article  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  • Kominoski JS, Rosemond AD, Benstead JP, Gulis V, Maerz JC, Manning DWP (2015) Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates. Ecol Appl 25:856–865

    Article  PubMed  Google Scholar 

  • Li Y, Niu S, Yu G (2016) Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Glob Chang Biol 22:934–943

    Article  PubMed  Google Scholar 

  • Liu X, Duan L, Mo J, Du E, Shen J, Lu X, Zhang Y, Zhou X, He C, Zhang F (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Keiblinger KM, Leitner S, Mentler A, Zechmeister-Boltenstern S (2016) Is there a convergence of deciduous leaf litter stoichiometry, biochemistry and microbial population during decay? Geoderma 272:93–100

    Article  CAS  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686

    Article  CAS  Google Scholar 

  • Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010) Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 80:89–106

    Article  Google Scholar 

  • Meier IC, Finzi AC, Phillips RP (2017) Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol Biochem 106:119–128

    Article  CAS  Google Scholar 

  • Moore TR, Trofymow JA, Prescott CE, Titus BD, Grp CW (2011) Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant Soil 339:163–175

    Article  CAS  Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174

    Article  Google Scholar 

  • Moorhead DL, Currie WS, Rastetter EB, Parton WJ, Harmon ME (1999) Climate and litter quality controls on decomposition: an analysis of modeling approaches. Global Biogeochem Cy 13:575–589

    Article  CAS  Google Scholar 

  • Nair RKF, Perks MP, Mencuccini M (2017) Decomposition nitrogen is better retained than simulated deposition from mineral amendments in a temperate forest. Glob Chang Biol 23:1711–1724

    Article  PubMed  Google Scholar 

  • Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917

    Article  CAS  Google Scholar 

  • Ostertag R, Hobbie SE (1999) Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability. Oecologia 121:564–573

    Article  CAS  PubMed  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  CAS  PubMed  Google Scholar 

  • Perakis SS, Compton JE, Hedin LO (2005) Nitrogen retention across a gradient of N-15 additions to an unpolluted temperate forest soil in Chile. Ecology 86:96–105

    Article  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    Article  CAS  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Article  PubMed  Google Scholar 

  • Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60:1–24

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R O, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass NREL/TP-510-42618. National Renewable Energy Laboratory

  • Smith VC, Bradford MA (2003) Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time. Appl Soil Ecol 24:197–203

    Article  Google Scholar 

  • SPSS I (2007) SPSS for windows (16.0). SPSS Inc, Chicago IL

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Sun T, Hobbie SE, Berg B, Zhang HG, Wang QK, Wang ZW, Hattenschwiler S (2018) Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc Natl Acad Sci U S A 115:10392–10397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu LH, Hu HL, Chen G, Peng Y, Xiao YL, Hu TX, Zhang J, Li XW, Liu L, Tang Y (2014) Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS One 9:e88752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Geffen KG, Poorter L, Sass-Klaassen U, van Logtestijn RSP, Cornelissen JHC (2010) The trait contribution to wood decomposition rates of 15 Neotropical tree species. Ecology 91:3686–3697

    Article  PubMed  Google Scholar 

  • van Huysen TL, Perakis SS, Harmon ME (2016) Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant Soil 406:1–14

    Article  CAS  Google Scholar 

  • Veen G, Freschet GT, Ordonez A, Wardle DA (2015) Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos 124:187–195

    Article  Google Scholar 

  • Wang W, Zhu W (2012) Soil retention of N-15 in a simulated N deposition study: effects of live plant and soil organic matter content. Plant Soil 351:61–72

    Article  CAS  Google Scholar 

  • Wang Q, Zhong M, He T (2013) Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biol Fert Soils 49:427–434

    Article  CAS  Google Scholar 

  • Wardle DA, Yeates GW, Williamson WM, Bonner KI, Barker GM (2004) Linking aboveground and belowground communities: the indirect influence of aphid species identity and diversity on a three trophic level soil food web. Oikos 107:283–294

    Article  Google Scholar 

  • Xu YH, Fan JL, Ding WX, Bol R, Chen ZM, Luo JF, Bolan N (2016) Stage-specific response of litter decomposition to N and S amendments in a subtropical forest soil. Biol Fert Soils 52:711–724

    Article  CAS  Google Scholar 

  • Yu ZP, Huang ZQ, Wang MH, Liu RQ, Zheng LJ, Wan XH, Hu ZH, Davis MR, Lin TC (2015) Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Biol Biochem 90:188–196

    Article  CAS  Google Scholar 

  • Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Penuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol Monogr 85:133–155

    Article  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zhang W, Chao L, Yang Q, Wang Q, Fang Y, Wang S (2016) Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology 97:2834–2843

    Article  PubMed  Google Scholar 

  • Zhang T, Luo Y, Chen HYH, Ruan H (2018) Responses of litter decomposition and nutrient release to N addition: a meta-analysis of terrestrial ecosystems. Appl Soil Ecol 128:35–42

    Article  Google Scholar 

  • Zhu XM, Chen H, Zhang W, Huang J, Fu SL, Liu ZF, Mo JM (2016) Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N-2-fixing vs. non-N-2-fixing tree species. Plant Soil 399:61–74

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant numbers 31730014, 31760200 and 31870427) and by Jiangxi Provincial Department of Science and Technology (grant numbers 20165BCB19006 & 20181ACH80006). We greatly appreciate Hans Lambers for full text modification during visiting our university and Jing Fan, Pei-Qing Li, Yu-Fei Zhang, and Yu Liu for their help in field sampling and laboratory measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Sheng Chen.

Additional information

Responsible Editor: Cindy Prescott.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 94 kb)

ESM 2

(XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, XM., Zhang, Y., Chen, FS. et al. The effects of simulated deposited nitrogen on nutrient dynamics in decomposing litters across a wide quality spectrum using a 15N tracing technique. Plant Soil 442, 141–156 (2019). https://doi.org/10.1007/s11104-019-04158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04158-y

Keywords

Navigation