Skip to main content
Log in

Silencing of glycerol-3-phosphate acyltransferase 6 (GPAT6) gene using a newly established virus induced gene silencing (VIGS) system in cucumber alleviates autotoxicity mimicked by cinnamic acid (CA)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Autotoxicity is a serious problem for continuous cropping of cucumber, it can limit its own growth and that of nearby cucumber plants and decrease yield and quality. Cinnamic acid (CA) derivatives are a class of autotoxins that can mimic autotoxic effects in cucumber.

Methods

We screened an Arabidopsis long hairpin RNA (lhRNA) library under CA-mimicked autotoxicity stress to obtain autotoxicity-resistant mutant lines. The glycerol-3-phosphate 2-O-acyltransferase 6 (GPAT6) gene was found to be silenced in one resistant mutant line, and GPAT6 homologous gene in cucumber was cloned and named CuGPAT6. To test gene function quickly, a new tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) system was established in cucumber using a special agroinfiltration solution and whole cotyledonary nodes.

Results

Cucumber phytoene desaturase gene (CuPDS) and CuGPAT6 gene were successfully silenced with a newly established tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) system in cucumber showing photobleaching and decreased CuPDS expression in leaves; and silencing of CuGPAT6 enhanced the tolerance to the autotoxin stress mimicked by CA in cucumber.

Conclusions

It indicated that the alleviation of the damage caused by CA treatment was probably through maintaining the integrity of cellular structure, supporting cell vitality and promoting growth in roots, and increasing the integrate chloroplast and thylakoid numbers in leaves, which restored the growth and net photosynthesis rate of CA treated CuGPAT6 silenced plants to the similar level to those of control plants. The results also demonstrated that the newly established TRV mediated VIGS system is functional, rapid, convenient and highly efficient in cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TRV-VIGS:

Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS)

PDS:

Phytoene desaturase

lhRNA:

Long hairpin RNA

RMHR:

Rolling-circle amplification (RCA)-mediated hpRNA

GPAT6:

Glycerol-3-phosphate 2-O-acyltransferase 6

CA:

Cinnamic acid

WT:

Wild-type

TEM:

Transmission electron microscopy

Pn:

Net photosynthetic rate

NCBI:

National Center for Biotechnology Information

BLAST:

Basic Local Alignment Search Tool

References

  • Angermüller S, Fahimi HD (1982) Imidazole-buffered osmium tetroxide: an excellent stain for visualization of lipids in transmission electron microscopy. Histochem J 14:823–835

    Article  PubMed  Google Scholar 

  • Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K (2002) An increase in unsaturation of fatty acids in phosphatidyl-glycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol 43:751–758

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (2002) RNA silencing. Curr Biol 12:R82–R84

    Article  CAS  PubMed  Google Scholar 

  • Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19:351–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    Article  CAS  Google Scholar 

  • Bernards MA, Lopez ML, Zajicek J, Lewis NG (1995) Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin. J Biol Chem 270:7382–7386

    Article  CAS  PubMed  Google Scholar 

  • Brigneti G, Martín-Hernández AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JDG (2004) Virus-induced gene silencing in Solanum species. Plant J 39:264–272

    Article  CAS  PubMed  Google Scholar 

  • Bu RF, Xie JM, Yu JH, Liao WB, Xiao XM, Lv J, Wang CL, Ye J, Calderón-Urrea A (2016) Autotoxicity in cucumber (Cucumis sativus L.) seedlings is alleviated by silicon through an increase in the activity of antioxidant enzymes and by mitigating lipid peroxidation. J Plant Biol 59:247–259

    Article  CAS  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JC, Jiang CZ, Gookin T, Hunter D, Clark D, Reid M (2004) Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Mol Biol 55:521–530

    Article  CAS  PubMed  Google Scholar 

  • Chen HC, Li Q, Shuford CM, Liu J, Muddiman DC, Sederoff RR, Chiang VL (2011a) Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis. Proc Natl Acad Sci U S A 108:21253–21258

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Truksa M, Snyder CL, El-Mezawy A, Shah S, Weselake RJ (2011b) Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol 155:851–865

    Article  CAS  PubMed  Google Scholar 

  • Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) А method of high frequency virus induced gene silencing in chili pepper (Сарsiсит аnnиит L. cv. Bukang). Mol Cells 17:377–380

    CAS  PubMed  Google Scholar 

  • Clough SJ (2005) Floral dip: agrobacterium-mediated germ line transformation. In Transgenic Plants: Methods and Protocols, pp 91–101

  • Croteau R, Kolattukudy P (1974) Biosynthesis of hydroxyfatty acid polymers-enzymatic synthesis of cutin frommonomer acids by cellfree preparations from epidermis of Vicia faba leaves. Biochemistry 13:3193–3202

    Article  CAS  PubMed  Google Scholar 

  • Cunningham JFX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Biol 49:557–583

    Article  CAS  Google Scholar 

  • Dai AH, Nie YX, Yu B, Li Q, Lu LY, Bai JG (2012) Cinnamic acid pretreatment enhances heat tolerance of cucumber leaves through modulating antioxidant enzyme activity. Environ Exp Bot 79:1–10

  • Di Stilio VS, Kumar RA, Oddone AM, Tolkin TR, Salles P, McCarty K (2010) Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoS One 5:e12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinesh-Kumar SP, Anandalakshmi R, Marathe R, Schiff M, Liu Y (2003) Virus-induced gene silencing. Methods Mol Biol 236:287–294

    CAS  PubMed  Google Scholar 

  • Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36:905–917

    Article  CAS  PubMed  Google Scholar 

  • Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134:1308–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu DQ, Zhu BZ, Zhu HL, Jiang WB, Luo YB (2005) Virus-induced gene silencing in tomato fruit. Plant J 43:299–308

    Article  CAS  PubMed  Google Scholar 

  • Gao XQ, Britt RC Jr, Shan L, He P (2011) Agrobacterium-mediated virus-induced gene silencing assay in cotton. J Vis Exp 54:2938

    Google Scholar 

  • Gidda SK, Shockey JM, Rothstein SJ, Dye RJM, Mullen RT (2009) Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiol Biochem 47:867–879

    Article  CAS  PubMed  Google Scholar 

  • Graça J, Pereira H (2000a) Methanolysis of bark suberins: analysis of glycerol and acid monomers. Phytochem Anal 11:45–51

    Article  Google Scholar 

  • Graça J, Pereira H (2000b) Suberin structure in potato periderm: glycerol, long chain monomers, and glyceryl and feruloyl dimers. J Agric Food Chem 48:5476–5483

    Article  CAS  PubMed  Google Scholar 

  • Graça J, Schreiber L, Rodrigues J, Pereira H (2002) Glycerol and glyceryl esters of ω-hydroxyacids in cutins. Phytochemistry 61:205–215

    Article  PubMed  Google Scholar 

  • Hileman LC, Drea S, Martino G, Litt A, Irish VF (2005) Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Plant J 44:334–341

    Article  CAS  PubMed  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D (2013) JAV1 controls Jasmonate-regulated plant defense. Mol Cell 50:504–515

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Ren Y, Li SG et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Takahashi H et al (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virol 386:407–416

    Article  CAS  Google Scholar 

  • Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus derived RNA. Proc Natl Acad Sci U S A 92:1679–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Beisson F, Koo AJK, Molina I, Pollard M, Ohlrogge J (2007a) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci U S A 104:18339–18344

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YH, Beisson F, Ohlrogge J, Pollard M (2007b) Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiol 144:1267–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci U S A 106:22008–22013

    Article  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002a) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002b) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2004) Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38:800–809

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu A-J, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003a) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22:5690–5699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003b) Virus induced gene silencing in plants. Methods 30:296–303

    Article  CAS  PubMed  Google Scholar 

  • Lü SY, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA (2009) Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J 59:553–564

    Article  CAS  PubMed  Google Scholar 

  • Ma XH, Wu TL (2008) Rapid and efficient regeneration in soybean [Glycine max (L.) Merrill] from whole cotyledonary node explants. Acta Physiol Plant 30:209–216

    Article  CAS  Google Scholar 

  • Marum L, Miguel A, Ricardo PC, Miguel C (2011) Identification of GPAT acyltransferases in cork oak. BMC Proc 5:69

    Article  Google Scholar 

  • Matthews REF (1991) Plant virology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Men X, Shi J, Liang W, Zhang Q, Lian G, Quan S, Zhu L, Luo Z, Chen M, Zhang D (2017) Glycerol-3-phosphate acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. J Exp Bot 68:513–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moire L, Schmutz A, Buchala A, Yan B, Stark RE, Ryser U (1999) Glycerol is a suberin monomer. New experimental evidence for an old hypothesis. Plant Physiol 119:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moolenaar WH, Kranenburg O, Postma FR, Zondag GC (1997) Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol 9:168–173

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713

    Article  CAS  Google Scholar 

  • Nawrath C (2002) The biopolymers cutin and suberin. Arabidopsis Book 1:e0021

    Article  PubMed  PubMed Central  Google Scholar 

  • Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payá-Milans M, Aznar-Moreno JA, Balbuena TS, Haslam RP, Gidda SK, Pérez-Hormaeche J, Mullen RT, Thelen JJ, Napier JA, Salas JJ, Garcés R, Martínez-Force E, Venegas-Calerón M (2016) Sunflower HaGPAT9-1 is the predominant GPAT during seed development. Plant Sci 252:42–52

    Article  CAS  PubMed  Google Scholar 

  • Peart JR, Cook G, Feys BJ, Parker JE, Baulcombe DC (2002) An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J 29:569–579

    Article  CAS  PubMed  Google Scholar 

  • Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Robertson D (2001) Silencing of a meristematic gene using geminivirus-derived vectors. Plant J 27:357–366

    Article  CAS  PubMed  Google Scholar 

  • Petit J, Bres C, Mauxion J-P, Wong JTF, Martin LBB, Fich EA, Joubès J, Rose JKC, Domergue F, Rothan C (2016) The glycerol-3-phosphate acyltransferase GPAT6 from tomato plays a central role in fruit cutin biosynthesis. Plant Physiol 171:894–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Stadler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Mysore KS, Senthil-Kumar M (2014) Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Front Plant Sci 5:323

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  CAS  PubMed  Google Scholar 

  • Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519

    Article  CAS  PubMed  Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu C-M, Anand A, Kang L, Mysore KS (2004) Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J 40:322–331

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:656–665

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Hema R, Anand A, Kang L, Udayakumar M, Mysore KS (2007) A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol 176:782–791

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Sun J, Yao J, Wang S, Ding M, Zhang H, Qian Z, Zhao N, Sa G, Zhao R, Shen X, Polle A, Chen S (2015) High rates of virus-induced gene silencing by tobacco rattle virus in Populus. Tree Physiol 35:1016–1029

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, Yung YC, Chen A, Chun J (2015) Lysophosphatidic acid signalling in development. Develop 142:1390–1395

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kohli RK (1999) Autotoxicity: concept, organisms, and ecological significance. Crit Rev Plant Sci 18:757–772

    Article  CAS  Google Scholar 

  • Stark RE, Tian S (2006) The cutin biopolymer matrix. In: Riederer M (ed) Biology of the Plant Cuticle, vol 23. Blackwell Publishing, Oxford, pp 126–144

    Chapter  Google Scholar 

  • Steenackers W, Cesarino I, Klíma P, Quareshy M, Vanholme R, Corneillie S, Kumpf RP, Wouwer DVD, Ljung K, Goeminne G, Novák O, Zažímalová E, Napier R, Boerjan W, Vanholme B (2016) The allelochemical MDCA inhibits lignification and affects auxin homeostasis. Plant Physiol 172:874–888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sui N, Li M, Liu XY, Wang N, Fang W, Meng QW (2007) Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene. Photosynthetica 45:447–454

    Article  CAS  Google Scholar 

  • Sui N, Tian S, Wang W, Wang M, Fan H (2017) Overexpression of glycerol-3-phosphate acyltransferase fromsuaeda salsaimproves salt tolerance in arabidopsis. Front Plant Sci 8:1337

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun YL, Li F, Sui N, Sun XL, Zhao SJ, Meng QW (2010) The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato. Photosynthetica 48:400–408

    Article  CAS  Google Scholar 

  • Takeuchi K, Reue K (2009) Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296:E1195–E1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Pei H, Zhang S, Chen J, Chen W, Yang R, Meng Y, You J, Gao J, Ma N (2014) TRV-GFP: a modified tobacco rattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot 65:311–322

    Article  CAS  PubMed  Google Scholar 

  • Turnage MA, Muangsa N, Peele CG, Robertson D (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J 30:107–114

    Article  CAS  PubMed  Google Scholar 

  • Valentine T, Shaw J, Blok VC, Phillips MS, Oparka KJ, Lacomme C (2004) Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiol 136:3999–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser PB, Bol JF (1999) Nonstructural proteins of tobacco rattle virus which have a role in nematode transmission: expression pattern and interaction with viral coat protein. J Gen Virol 80:3273–3280

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Cai X, Wang X, Zheng Z (2006) Optimisation of tobacco rattle virus-induced gene silencing in Arabidopsis. Funct Plant Biol 33:347–355

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Luo YZ, Zhang L, Jiao XM, Wang MB, Fan YL (2008) Rolling circle amplification-mediated hairpin RNA (RMHR) library construction in plants. Nucleic Acids Res 36:e149–e149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Yang X, Wang N, Liu X, Nelson RS, Li W, Fan Z, Zhou T (2016) An efficient virus-induced gene silencing vector for maize functional genomics research. Plant J 86:102–115

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J (2010) A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci U S A 107:12040–12045

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160:638–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JQ, Matsui Y (1994) Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J Chem Ecol 20:21–31

    Article  CAS  PubMed  Google Scholar 

  • Yu JQ, Shou SY, Qian YR, Zhu ZJ, Hu WH (2000) Autotoxic potential of cucurbit crops. Plant Soil 223:149–153

    Article  Google Scholar 

  • Zhang C, Ghabrial SA (2006) Development of bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virol 344:401–411

    Article  CAS  Google Scholar 

  • Zhang Y, Gu M, Xia XJ, Shi K, Zhou YH, Yu JQ (2009) Effects of Phenylcarboxylic acids on mitosis, Endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.). J Chem Ecol 35:679–688

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Chen C, Ge HL, Liu JM, Luo YL, Liu K, Chen L, Xu KD, Zhang Y, Tan GX, Li CW (2014) Efficient soybean regeneration and agrobacterium-mediated transformation using a whole cotyledonary node as an explant. Biotechnol Appl Biochem 61:620–625

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yu DS, Zhang Y, Liu K, Xu KD, Zhang FL, Wang J, Tan GX, Nie XH, Ji QH, Zhao L, Li CW (2017) Vacuum and co-cultivation Agroinfiltration of (germinated) seeds results in tobacco rattle virus (TRV) mediated whole-plant virus-induced gene silencing (VIGS) in wheat and maize. Front Plant Sci 8:393

    PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Xia Q, Dauk M, Shen W, Selvarai G, Zou J (2003) Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15:1872–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank professor Lei Wang and the Key Laboratory of Plant Genetics and Molecular Breeding at Zhoukou Normal University for providing RNAi mutant library of Arabidopsis thaliana and pTRV2-SlPDS vector. The authors gratefully acknowledge Prof. Yule Liu (Tsinghua University, China) and Prof. David Baulcombe (University of Cambridge, UK) for providing VIGS vectors. This research was supported by the National Natural Science Foundation Funded of China (31872129 and 31071807), Henan Natural Science Fund (162300410107); University-Level Technology Leader (2016BZ01); China Postdoctoral Science Foundation Funded Project (2018 M630821); Henan Postdoctoral Science Foundation Funded Project (103020218003/002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyu Wu or Chengwei Li.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, R., Wang, R., Wei, Q. et al. Silencing of glycerol-3-phosphate acyltransferase 6 (GPAT6) gene using a newly established virus induced gene silencing (VIGS) system in cucumber alleviates autotoxicity mimicked by cinnamic acid (CA). Plant Soil 438, 329–346 (2019). https://doi.org/10.1007/s11104-019-03996-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-03996-0

Keywords

Navigation