Skip to main content

Advertisement

Log in

Effects of biochar on carbon and nitrogen fluxes in boreal forest soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The addition of biochar to soil may offer a chance to mitigate climate change by increasing soil carbon stocks, improving soil fertility and enhancing plant growth. The impacts of biochar in cold environments with limited microbial activity are still poorly known.

Methods

In order to understand to what extent different types and application rates of biochar affect carbon (C) and nitrogen (N) fluxes in boreal forests, we conducted a field experiment where two different spruce biochars (pyrolysis temperatures 500 °C and 650 °C) were applied at the rate of 0, 5 and 10 t ha−1 to Pinus sylvestris forests in Finland.

Results

During the second summer after treatment, soil CO2 effluxes showed no clear response to biochar addition. Only in June, the 10 t ha−1 biochar (650 °C) plots had significantly higher CO2 effluxes compared to the control plots. The pyrolysis temperature of biochar did not affect soil CO2 effluxes. Soil pH increased in the plots receiving 10 t ha−1 biochar additions. Biochar treatments had no significant effect on soil microbial biomass and biological N fixation. Nitrogen mineralization rates in the organic layer tended to increase with the amount of biochar, but no statistically significant effect was detected.

Conclusions

The results suggest that wood biochar amendment rates of 5–10 t ha−1 to boreal forest soil do not cause large or long-term changes in soil CO2 effluxes or reduction in native soil C stocks. Furthermore, the results imply that biochar does not adversely affect soil microbial biomass or key N cycling processes in boreal xeric forests, at least within this time frame. Thus, it seems that biochar is a promising tool to mitigate climate change and sequester additional C in boreal forest soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamczyk S, Adamczyk B, Kitunen V, Smolander A (2015) Monoterpenes and higher terpenes may inhibit enzyme activities in boreal forest soil. Soil Biol Biochem 87:59–66

    Article  CAS  Google Scholar 

  • Adamczyk B, Karonen M, Adamczyk S, Engström MT, Laakso T, Saranpää P, Kitunen V, Smolander A, Simon J (2017) Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biol Biochem 107:60–67

    Article  CAS  Google Scholar 

  • Ameloot N, Graber ER, Verheijen FGA, De Neve S (2013) Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci 64:379–390

    Article  CAS  Google Scholar 

  • Ameloot N, Sleutel S, Das KC, Kanagaratnam J, De Neve S (2015) Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy 7:135–144

    Article  CAS  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320

    Article  CAS  Google Scholar 

  • Ball PN, MacKenzie MD, DeLuca TH, Holben WE (2010) Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane Forest soils. J Environ Qual 39:1243–1253

    Article  CAS  PubMed  Google Scholar 

  • Beck T, Joergensen RG, Kandeler E, Makeshin E, Nuss E, Oberholzer HR, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032

    Article  CAS  Google Scholar 

  • Berglund LM, DeLuca TH, Zackrisson O (2004) Activated carbon amendments to soil alters nitrification rates in scots pine forests. Soil Biol Biochem 36:2067–2073

    Article  CAS  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Brown DH, Bates JW (1990) Bryophytes and nutrient cycling. Bot J Linn Soc 104:129–147

    Article  Google Scholar 

  • Bruckman VJ, Terada T, Uzun BB, Apaydin-Varol E, Liu J (2015) Biochar for climate change mitigation: tracing the in situ priming effect on a forest site. Energy Procedia 76:381–387

    Article  CAS  Google Scholar 

  • Bruckman VJ, Klinglmüller M, Milenković M (2016) Biochar in the view of climate change mitigation: the FOREBIOM experience. In: Bruckman VJ, Apaydın-Varol E, Uzun BB, Liu J (eds.). Biochar: a regional supply chain approach in view of climate change mitigation. Cambridge University press: New York, Cambridge. https://doi.org/10.1017/9781316337974

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    Article  CAS  Google Scholar 

  • Cajander AK (1949) Forest types and their significance. Acta For Fenn 56:71

  • Case SDC, McNamara NC, Reay DS, Stott AW, Grant HK, Whitaker J (2015) Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol Biochem 81:178–185

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty E, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39:1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43:2127–2134

    Article  CAS  Google Scholar 

  • DeLuca TH, Boisvenue C (2012) Boreal forest soil carbon: distribution, function and modelling. Forestry 85:161–184

    Article  Google Scholar 

  • DeLuca TH, Nilsson M-C, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214

    Article  CAS  PubMed  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448–453

    Article  CAS  Google Scholar 

  • DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson M-C (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia 152(1):121–130

    Article  PubMed  Google Scholar 

  • DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181

    Article  CAS  PubMed  Google Scholar 

  • Dempster DN, Gleeson DB, Solaiman ZM, Jones DL, Murphy DV (2012) Decreased soil microbial biomass and nitrogen mineralisation with eucalyptus biochar addition to a coarse textured soil. Plant Soil 354:311–324

    Article  CAS  Google Scholar 

  • Fang Y, Singha B, Singh BP (2015) Effect of temperature on biochar priming effects and its stability in soils. Soil Biol Biochem 80:136–145

    Article  CAS  Google Scholar 

  • Gentili F, Nilsson M-C, Zackrisson O, DeLuca TH, Sellstedt A (2005) Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria. J Exp Bot 56(422):3121–3127

    Article  CAS  PubMed  Google Scholar 

  • Granhall U, Lindberg T (1980) Nitrogen input through biological nitrogen fixation. In: Persson T (ed) Structure and function of northern coniferous forests – an ecosystem study, Ecol Bull, vol 32, pp 333–340

    Google Scholar 

  • Güereña DT, Lehmann J, Thies JE, Enders A, Karanja N, Neufeldt H (2015) Partitioning the contributions of biochar properties to enhanced biological nitrogen fixation in common bean (Phaseolus vulgaris). Biol Fertil Soils 51:479–491

    Article  Google Scholar 

  • Gundale MJ, DeLuca TH, Nordin A (2011) Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Glob Chang Biol 17:2743–2753

    Article  Google Scholar 

  • Gundale MJ, Nilsson M-C, Pluchon N, Wardle DA (2015) The effect of biochar management on soil and plant community properties in a boreal forest. GCB Bioenergy. https://doi.org/10.1111/gcbb.12274

  • Gurwick NP, Moore LA, Kelly C, Elias P (2013) A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS One 8(9):e75932. https://doi.org/10.1371/journal.pone.0075932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer EC, Balogh-Brunstad Z, Jakobsen I, Olsson PA, Stipp SLS, Rillig MC (2014) A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol Biochem 77:252–260

    Article  CAS  Google Scholar 

  • He Y, Zhou X, Jiang L, Li M, Du Z, Zhou G, Shao J, Wang X, Xu Z, Bai SH, Wallace H, Xu C (2017) Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9:743–755

    Article  CAS  Google Scholar 

  • Helmisaari H-S, Kaarakka L, Olsson BA (2014) Increased utilization of different tree parts for energy purposes in the Nordic countries. Scand J For Res 29(4):312–322

    Article  Google Scholar 

  • IUSS Working group WRB (2015) world Reference Base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World soil resources reports no. 106. FAO, Rome

  • Jones DL, Murphy DV, Khalid M, Ahmadd W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731

    Article  CAS  Google Scholar 

  • Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73:1173–1181

    Article  CAS  Google Scholar 

  • Korhonen JFJ, Pihlatie M, Pumpanen J, Aaltonen H, Hari P, Levula J, Kieloaho A-J, Nikinmaa E, Vesala T, Ilvesniemi H (2013) Nitrogen balance of a boreal scots pine forest. Biogeosciences 10:1083–1095

    Article  Google Scholar 

  • Kulmala L, Launiainen S, Pumpanen J, Lankreijer H, Lindroth A, Hari P, Vesala T (2008) H2O and CO2 fluxes at the floor of a boreal pine forest. Tellus, series B: Chem Phys Meteorol 60 B: 167–178

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2012) Biochar for environmental management – science and technology. MBG Books, UK. 415 p

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Kockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lei O, Zhang R (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soils Sediments 13:1561–1572

    Article  CAS  Google Scholar 

  • Leppänen SM, Salemaa M, Smolander A, Mäkipää R, Tiirola M (2013) Nitrogen fixation and methanotrophy in forest mosses along a N deposition gradient. Environ Exp Bot 90:62–69

    Article  Google Scholar 

  • Limmer C, Drake HL (1996) Nonsymbiotic N2-fixation in acidic and pH-neutral forest soils: aerobic and anaerobic differentials. Soil Biol Biochem 28:177–183

    Article  CAS  Google Scholar 

  • Liu S, Zhang Y, Zong Y, Hu Z, Wu S, Zhou JIE, Jin Y, Zou J (2015) Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy. https://doi.org/10.1111/gcbb.12265

  • Mia S, van Groenigen JW, van de Voorde TFJ, Oram NJ, Bezemer TM, Mommer L, Jeffery S (2014) Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agric Ecosyst Environ 191:83–91

    Article  CAS  Google Scholar 

  • Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015) Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol Biochem 81:244–254

    Article  CAS  Google Scholar 

  • Mitchell PJ, Simpson AJ, Soong R, Schurman JS, Thomas SC, Simpson MJ (2016) Biochar amendment and phosphorus fertilization altered forest soil microbial community and native soil organic matter molecular composition. Biogeochem 130:227–245

    Article  CAS  Google Scholar 

  • Nelissen V, Rütting T, Huygens D, Staelens J, Ruysschaert G, Boeckx P (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol Biochem 55:20–27

    Article  CAS  Google Scholar 

  • Nohrstedt H-Ö (1985) Nonsymbiotic nitrogen fixation in the topsoil of some forest stands in central Sweden. Can J For Res 15:715–722

    Article  Google Scholar 

  • Noyce GL, Basiliko N, Fulthorpe R, Sackett TE, Thomas SC (2015) Soil microbial responses over 2 years following biochar addition to a north temperate forest. Biol Fertil Soils 51:649–659

    Article  CAS  Google Scholar 

  • Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nat Geosci 2:692–695

    Article  CAS  Google Scholar 

  • Page-Dumroese DS, Coleman MD, Thomas SC (2017) Opportunities and uses of biochar on forest sites in North America [chapter 15]. In: Bruckman V, Varol EA, Uzun B, Liu J (eds) Biochar: a regional supply chain approach in view of climate change mitigation. Cambridge University Press, Cambridge, UK, pp 315–335

    Google Scholar 

  • Palviainen M, Berninger F, Zhu T, Köster K, Bruckman V, Moreira De Assumpção C, Mishra A, Pumpanen J (2017a) Short-term effects of biochar on carbon and nitrogen cycling in boreal Scots pine forests. BIOGEOMON 2017, 9th International Symposium on Ecosystem Behavior, August 20–24, 2017, Litomyšl, Czech Republic. Book of abstracts pp. 182–183. http://www.biogeomon.cz/documents/Abstracts.pdf

  • Palviainen M, Pumpanen J, Berninger F, Ritala K, Duan B, Heinonsalo J, Sun H, Köster E, Köster K (2017b) Nitrogen balance along a northern boreal forest fire chronosequence. PLoS One. https://doi.org/10.1371/journal.pone.0174720

  • Pirinen P, Simola H, Aalto J, Kaukoranta J-P, Karlsson P, Ruuhela R (2012) Climatological statistics of Finland 1981–2010. Finnish Meteorological Institute, Helsinki, Finland

    Google Scholar 

  • Prayogo C, Jones JE, Baeyens J, Bending GD (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702

    Article  CAS  Google Scholar 

  • Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, Urich T, Schleper C, Sassmann S, Kitzler B, Soja G, Hood-Nowotny RC (2014) Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS One 9(1):e86388. https://doi.org/10.1371/journal.pone.0086388

    Article  PubMed  PubMed Central  Google Scholar 

  • Pumpanen J, Kulmala L, Lindén A, Kolari P, Nikinmaa E, Hari P (2015) Seasonal dynamics of autotrophic respiration in boreal forest soil estimated by continuous chamber measurements. Bor Environ Res 20:637–650

    Google Scholar 

  • Robertson SJ, Rutherford PM, López-Gutiérrez JC, Massicotte HB (2012) Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils. Can J Soil Sci 92:329–340

    Article  CAS  Google Scholar 

  • Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L) increases with bio-char additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • Sackett TE, Basiliko N, Noyce GL, Winsborough C, Ikeda C, Thomas SC (2014) Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy. https://doi.org/10.1111/gcbb.12211

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    Article  CAS  Google Scholar 

  • Smolander A, Kitunen V, Priha O, Mälkönen E (1995) Nitrogen transformations in limed and nitrogen fertilized soil in Norway spruce stands. Plant Soil 17:107–115

    Article  Google Scholar 

  • Song X, Pan G, Zhang C, Zhang L, Wang H (2016) Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta-analysis. Ecosyst Health Sustainability 2(2):e01202. https://doi.org/10.1002/ehs2.1202

    Article  Google Scholar 

  • Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Env Sci 3:179–193

    CAS  Google Scholar 

  • Spokas KA, Baker JM, Reicosky DC (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil 333:443–452

    Article  CAS  Google Scholar 

  • Sponseller RA, Gundale MJ, Futter M, Ring E, Nordin A, Näsholm T, Laudon H (2016) Nitrogen dynamics in managed boreal forests: recent advances and future research directions. Ambio 45(Suppl. 2):S175–S187

    Article  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  • Stewart CE, Zheng JY, Botte J, Cotrufo MF (2013) Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. Glob Change Biol Bioenergy 5:153–164

    Article  CAS  Google Scholar 

  • Thomas SC, Gale G (2015) Biochar and forest restoration: a review and meta-analysis of tree growth responses. New For 46:931–946

    Article  Google Scholar 

  • Van Zwieten L, Rose T, Herridge D, Kimber S, Rust J, Cowie A, Morris S (2015) Enhanced biological N2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: dissection of causal mechanisms. Plant Soil 395:7–20

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Article  CAS  Google Scholar 

  • Wang J, Xiong Z, Kuzyakov (2015) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy. https://doi.org/10.1111/gcbb.12266

  • Wardle DA, Zackrisson O, Nilsson M-C (1998) The charcoal effect in Boreal forests: mechanisms and ecological consequences. Oecologia 115(3):419–426

  • Wardle DA, Nilsson M, Zackrisson O (2008) Forest-derived charcoal causes loss of forest humus. Science 320:629

    Article  CAS  PubMed  Google Scholar 

  • Woolf D, Amonette JE, Stree-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1(56)

  • Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the boreal forest. Oikos 77:10–19

    Article  Google Scholar 

  • Zackrisson O, DeLuca TH, Nilsson M-C, Sellstedt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–3334

    Article  Google Scholar 

  • Zheng H, Wang Z, Deng X, Herbert S, Xing BS (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39

    Article  CAS  Google Scholar 

  • Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by The Foundation for Research of Natural Resources in Finland (2016085). The study was also supported by the Academy of Finland (286685, 294600, 307222, 277623) and the FCoE of atmospheric sciences (Center of Excellence (1118615). We thank for the staff of Hyytiälä Forestry Field Station for supporting us in the field work and Marjut Wallner for help with laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjo Palviainen.

Additional information

Responsible Editor: Simon Jeffery

Electronic supplementary material

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palviainen, M., Berninger, F., Bruckman, V.J. et al. Effects of biochar on carbon and nitrogen fluxes in boreal forest soil. Plant Soil 425, 71–85 (2018). https://doi.org/10.1007/s11104-018-3568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3568-y

Keywords

Navigation