Skip to main content
Log in

Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Arbuscular mycorrhizal fungi (AMF) are plant root symbionts highly specialized upon phosphorus (P) supply to their hosts. We investigated plants’ ability to regulate carbon (C) flow to AMF depending on the soil P supply.

Methods

Leek (Allium porrum), medic (Medicago truncatula), and ryegrass (Lolium perenne) were subjected to AMF inoculation and/or P fertilization in a glasshouse experiment. The C flows were traced using 13C pulse labelling.

Results

Mycorrhizal P uptake responses were lowered by P fertilization in all tested plant species. Independently from the C flow to the roots, the C flow to AMF-signature fatty acid 16:1ω5 were reduced by P fertilization in leek and ryegrass (but not in medic). Calculated mycorrhizal C costs ranged between 0.9% and 10.5% of the plant C budget.

Conclusions

Suppression of the C flow from the plants to AMF resulted from both reduced abundance of AMF in the roots and lowered relative C income per unit of AMF biomass in P-fertilized pots. Although inconsistencies amongst different plant species demand caution in making generalizations, these results suggest an active role of host plants in regulating the C flow to AMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297

    Article  Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  PubMed Central  Google Scholar 

  • Black KG, Mitchell DT, Osborne BA (2000) Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. Plant Cell Environ 23:797–809. doi:10.1046/j.1365-3040.2000.00598.x

    Article  CAS  Google Scholar 

  • Blanke V, Renker C, Wagner M, Füllner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992. doi:10.1111/j.1469-8137.2005.01374.x

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants - an economic analogy. Annu Rev Ecol Syst 16:363–392. doi:10.1146/annurev.es.16.110185.002051

    Article  Google Scholar 

  • Bravo A, Brands M, Wewer V, Dormann P, Harrison MJ (2017) Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol 214:1631–1645

    Article  CAS  PubMed  Google Scholar 

  • Calderón FJ, Schultz DJ, Paul EA (2012) Carbon allocation, belowground transfers, and lipid turnover in a plant-microbial association. Soil Sci Soc Am J 76:1614–1623. doi:10.2136/sssaj2011.0440

    Article  Google Scholar 

  • Casieri L et al (2013) Biotrophic transportome in mutualistic plant-fungal interactions. Mycorrhiza 23:597–625. doi:10.1007/s00572-013-0496-9

    Article  CAS  PubMed  Google Scholar 

  • Douds DD, Johnson CR, Koch KE (1988) Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol 86:491–496. doi:10.1104/pp.86.2.491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drigo B et al (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107:10938–10942. doi:10.1073/pnas.0912421107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facelli E, Facelli JM, Smith SE, McLaughlin MJ (1999) Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv. Mt. barker. New Phytol 141:535–547. doi:10.1046/j.1469-8137.1999.00367.x

    Article  Google Scholar 

  • Facelli E, Duan T, Smith SE, Christophersen HM, Facelli JM, Smith FA (2014) Opening the black box: outcomes of interactions between arbuscular mycorrhizal (AM) and non-host genotypes of Medicago depend on fungal identity, interplay between P uptake pathways and external P supply. Plant Cell Environ 37:1382–1392. doi:10.1111/pce.12237

    Article  CAS  PubMed  Google Scholar 

  • Franken P (2010) Molecular-physiological aspects of the AM symbiosis post penetration. In: Kapulnik Y (ed) Koltai H. Arbuscular Mycorrhizas, Physiology and Function, pp 93–116. doi:10.1007/978-90-481-9489-6_5

    Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods 14:151–163. doi:10.1016/0167-7012(91)90018-l

    Article  Google Scholar 

  • Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21:937–950. doi:10.1016/j.tplants.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  • Grace EJ, Cotsaftis O, Tester M, Smith FA, Smith SE (2009) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol 181:938–949. doi:10.1111/j.1469-8137.2008.02720.x

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Hodge NC, Morton JB (1995) Fatty acid methyl ester profiles for characterization of glomalean fungi and their endomycorrhizae. Appl Environ Microbiol 61:58–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimoldi AA, Kavanová M, Lattanzi FA, Schaufele R, Schnyder H (2006) Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange. New Phytol 172:544–553. doi:10.1111/j.1469-8137.2006.01853.x

    Article  CAS  PubMed  Google Scholar 

  • Grman E (2012) Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93:711–718

    Article  PubMed  Google Scholar 

  • Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean-Rhizobium-Glomus associations. New Phytol 101:427–440. doi:10.1111/j.1469-8137.1985.tb02849.x

    Article  CAS  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83. doi:10.1111/j.1469-8137.1990.tb00924.x

    Article  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789. doi:10.1111/j.1469-8137.2007.02294.x

    Article  CAS  PubMed  Google Scholar 

  • Ji BM, Bever JD (2016) Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere 7 doi:10.1002/ecs2.1256

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647. doi:10.1111/j.1469-8137.2009.03110.x

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419. doi:10.1007/s11104-012-1406-1

    Article  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586. doi:10.1046/j.1469-8137.1997.00729.x

    Article  Google Scholar 

  • Johnson D, Leake JR, Read DJ (2002) Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biol Biochem 34:1521–1524. doi:10.1016/s0038-0717(02)00126-8

    Article  CAS  Google Scholar 

  • Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol 205:1473–1484. doi:10.1111/nph.13172

    Article  CAS  PubMed  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244. doi:10.1016/j.soilbio.2009.03.005

    Article  CAS  Google Scholar 

  • Kiers ET et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal Symbiosis. Science 333:880–882. doi:10.1126/science.1208473

    Article  CAS  PubMed  Google Scholar 

  • Koch KE, Johnson CR (1984) Photosynthate partitioning in split-root Citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiol 75:26–30. doi:10.1104/pp. 75.1.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koide R, Elliott G (1989) Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis. Funct Ecol 3:252–255

    Google Scholar 

  • Kucey RMN, Paul EA (1982) Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.) Soil Biol Biochem 14:407–412. doi:10.1016/0038-0717(82)90013-x

    Article  Google Scholar 

  • Lemoine R et al (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4. doi:10.3389/fpls.2013.00272

  • Lendenmann M, Thonar C, Barnard RL, Salmon Y, Werner RA, Frossard E, Jansa J (2011) Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21:689–702. doi:10.1007/s00572-011-0371-5

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Smith SE, Holloway RE, Zhu YG, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543. doi:10.1111/j.1469-8137.2006.01846.x

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant-Microbe Interact 11:14–22. doi:10.1094/mpmi.1998.11.1.14

    Article  CAS  PubMed  Google Scholar 

  • Manck-Götzenberger J, Requena N (2016) Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci 7. doi:10.3389/fpls.2016.00487

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501. doi:10.1111/j.1469-8137.1990.tb00476.x

    Article  Google Scholar 

  • Miltner A, Kopinke FD, Kindler R, Selesi D, Hartmann A, Kästner M (2005) Non-phototrophic CO2 fixation by soil microorganisms. Plant Soil 269:193–203

    Article  CAS  Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959. doi:10.1111/j.1469-8137.2008.02721.x

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, George E (2010) Nutrient uptake: the arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy. Arbuscular Mycorrhizas: Physiol Funct. doi:10.1007/978-90-481-9489-6_7

  • Ohno T, Zibilske LM (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55:892–895. doi:10.2136/sssaj1991.036159950055000300046x

    Article  CAS  Google Scholar 

  • Olsson PA, Johnson NC (2005) Tracking carbon from the atmosphere to the rhizosphere. Ecol Lett 8:1264–1270. doi:10.1111/j.1461-0248.2005.00831.x

    Article  Google Scholar 

  • Olsson PA, van Aarle IM, Gavito ME, Bengtson P, Bengtsson G (2005) 13C incorporation into signature fatty acids as an assay for carbon allocation in arbuscular mycorrhiza. Appl Environ Microbiol 71:2592–2599. doi:10.1128/aem.71.5.2592-2599.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72:123–131. doi:10.1111/j.1574-6941.2009.00833.x

    Article  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labeling with 32P and 33P. New Phytol 124:489–494. doi:10.1111/j.1469-8137.1993.tb03840.x

    Article  CAS  Google Scholar 

  • Poulsen KH, Nagy R, Gao LL, Smith SE, Bucher M, Smith FA, Jakobsen I (2005) Physiological and molecular evidence for pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol 168:445–453. doi:10.1111/j.1469-8137.2005.01523.x

    Article  CAS  PubMed  Google Scholar 

  • Püschel D, Janoušková M, Hujslová M, Slavíková R, Gryndlerová H, Jansa J (2016) Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol Evol 6:4332–4346. doi:10.1002/ece3.2207

    Article  PubMed  PubMed Central  Google Scholar 

  • Řezáčová V, Gryndler M, Bukovská P, Šmilauer P, Jansa J (2016) Molecular community analysis of arbuscular mycorrhizal fungi - contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia 59:179–187. doi:10.1016/j.pedobi.2016.04.002

    Article  Google Scholar 

  • Řezáčová V, Konvalinková T, Jansa J (2017a) Carbon fluxes in mycorrhizal plants. In: Varma a, Prasad R, Tuteja N (eds) mycorrhiza - eco-physiology, secondary metabolites, nanomaterials. 4 edn. Springer International Publishing, p 335. doi:10.1007/978-3-319-57849-1_1

  • Řezáčová V, Slavíková R, Konvalinková T, Hujslová M, Gryndlerová H, Gryndler M, Püschel D, Jansa J (2017b) Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native Panicum grasses – a case of dysfunctional symbiosis. Pedobiologia 62:48–55

    Article  Google Scholar 

  • Schroeder MS, Janos DP (2004) Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant Soil 264:335–348. doi:10.1023/b:plso.0000047765.28663.49

    Article  CAS  Google Scholar 

  • Schroeder MS, Janos DP (2005) Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density. Mycorrhiza 15:203–216. doi:10.1007/s00572-004-0324-3

    Article  CAS  PubMed  Google Scholar 

  • Slavíková R et al (2017) Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi. Mycorrhiza 27:35–51. doi:10.1007/s00572-016-0731-2

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edition. Mycorrhizal Symbiosis, 3rd edition

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524. doi:10.1111/j.1469-8137.2004.01039.x

    Article  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358. doi:10.1111/j.1469-8137.2008.02753.x

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057. doi:10.1104/pp.111.174581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snellgrove RC, Splittstoesser WE, Stribley DP, Tinker PB (1982) The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular arbuscular mycorrhizas. New Phytol 92:75–87. doi:10.1111/j.1469-8137.1982.tb03364.x

    Article  Google Scholar 

  • Sochorová L, Jansa J, Verbruggen E, Hejcman M, Schellberg J, Kiers ET, Johnson NC (2016) Long-term agricultural management maximizing hay production can significantly reduce belowground C storage. Agric Ecosyst Environ 220:104–114. doi:10.1016/j.agee.2015.12.026

    Article  Google Scholar 

  • Valentine AJ, Osborne BA, Mitchell DT (2001) Interactions between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber. Sci Hortic 88:177–189. doi:10.1016/s0304-4238(00)00205-3

    Article  CAS  Google Scholar 

  • Valentine AJ, Mortimer PE, Kleinert A, Kang Y, Benedito VA (2013) Carbon metabolism and costs of arbuscular mycorrhizal associations to host roots. In: Aroca R (ed) Symbiotic endophytes, vol 37. Soil biology, pp 233–252. doi:10.1007/978-3-642-39317-4_12

  • Verbruggen E, Jansa J, Hammer EC, Rillig MC (2016) Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? J Ecol 104:261–269

    Article  CAS  Google Scholar 

  • Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M (2015) Local and distal effects of arbuscular mycorrhizal colonization on direct pathway pi uptake and root growth in Medicago truncatula. J Exp Bot 66:4061–4073. doi:10.1093/jxb/erv202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welc M, Buenemann EK, Fliessbach A, Frossard E, Jansa J (2012) Soil bacterial and fungal communities along a soil chronosequence assessed by fatty acid profiling. Soil Biol Biochem 49:184–192. doi:10.1016/j.soilbio.2012.01.032

    Article  CAS  Google Scholar 

  • Werner GDA, Kiers ET (2015) Partner selection in the mycorrhizal mutualism. New Phytol 205:1437–1442. doi:10.1111/nph.13113

    Article  PubMed  Google Scholar 

  • van de Wiel CCM, van der Linden CG, Scholten OE (2016) Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica 207:1–22

    Article  Google Scholar 

  • Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738. doi:10.2307/2446507

    Article  CAS  PubMed  Google Scholar 

  • Wyatt GAK, Kiers ET, Gardner A, West SA (2014) A biological market analysis of the plant-mycorrhizal symbiosis. Evolution 68:2603–2618. doi:10.1111/evo.12466

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by projects LK11224 and LO1417 granted by the Ministry of Education, Youth and Sports of the Czech Republic, by project 14-19191S granted by the Czech Science Foundation, and by the long-term development program RVO61388971. Constructive comments by three anonymous reviewers and the editor are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tereza Konvalinková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Tatsuhiro Ezawa.

Electronic supplementary material

ESM 1

(PDF 138 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konvalinková, T., Püschel, D., Řezáčová, V. et al. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419, 319–333 (2017). https://doi.org/10.1007/s11104-017-3350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3350-6

Keywords

Navigation