Skip to main content
Log in

A seed-recruited microbiome protects developing seedlings from disease by altering homing responses of Pythium aphanidermatum zoospores

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We investigated potential mechanisms by which a seed microbiome recruited from vermicomposted dairy manure alters Pythium aphanidermatum zoospore mediated pathogenesis in cucumber.

Methods

Bioassays were conducted to measure arrival of zoospores at the seed surface via qPCR and subsequent seedling disease incidence. Seed exudates were collected at relevant time points for use in zoospore microscopy assays. Metabolomic analysis was used to characterize seed exudates.

Results

Microbes recruited by the germinating seed from a disease suppressive substrate within 8 hours of sowing prevented zoospore arrival at the seed surface, modified seed exudates and reduced disease incidence. In vitro exposure to microbially modified seed exudates altered zoospore homing responses and reduced both encystment and germination compared to control exudates. Combining modified and control exudates failed to restore zoospore attraction to levels observed with control exudates. Observed zoosporolytic activity of the modified exudates was unique to the ethyl acetate fraction and metabolomic analysis revealed several putative zoosporolytic compounds present at higher relative abundance when compared to control exudates.

Conclusions

The observed disease suppression was likely due to the production of a specific zoosporolytic compound or set of compounds in the spermosphere by one or more members of the seed-recruited vermicompost microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barret M et al (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81:1257–1266. doi:10.1128/Aem.03722-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Benitez MS et al (2007) Multiple statistical approaches of community fingerprint data reveal bacterial populations associated with general disease suppression arising from the application of different organic field management strategies. Soil Biol Biochem 39:2289–2301

    Article  CAS  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) The plant microbiome and its importance for plant and human health. Front Microbiol 5:491. doi:10.3389/Fmicb.2014.00491

    PubMed  PubMed Central  Google Scholar 

  • Carr EA, Nelson EB (2014) Disease-suppressive vermicompost induces a shift in germination mode of Pythium aphanidermatum zoosporangia. Plant Dis 98:361–367. doi:10.1094/PDIS-05-13-0466-RE

    Article  CAS  Google Scholar 

  • Chen M-H, Jack ALH, McGuire IC, Nelson EB (2012) Seed-colonizing bacterial communities associated with the suppression of Pythium seedling disease in a municipal biosolids compost. Phytopathology 102:478–489. doi:10.1094/phyto-08-11-0240-r

    Article  CAS  PubMed  Google Scholar 

  • Chen M-H, Nelson EB (2008) Seed-colonizing microbes from municipal biosolids compost suppress Pythium ultimum damping-off on different plant species. Phytopathology 98:1012–1018

    Article  PubMed  Google Scholar 

  • Chen M-H, Nelson EB (2012) Microbial-induced carbon competition in the spermosphere leads to pathogen and disease suppression in a municipal biosolids compost. Phytopathology 102:588–596

    Article  PubMed  Google Scholar 

  • de Bruijn I, de Kock MJ, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428

    Article  PubMed  Google Scholar 

  • Deacon JW (1996) Ecological implications of recognition events in the pre-infection stages of root pathogens. New Phytol 133:135–145

    Article  Google Scholar 

  • Deacon JW, Donaldson SP (1993) Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol Res 97:1153–1171

    Article  CAS  Google Scholar 

  • Deacon JW, Mitchell RT (1985) Toxicity of oat roots, oat root extracts, and saponins to zoospores of Pythium spp. and other fungi. Trans Br Mycol Soc 84:479–487. doi:10.1016/S0007-1536(85)80010-3

    Article  Google Scholar 

  • Donaldson SP, Deacon JW (1993a) Differential encystment of zoospores of Pythium species by saccharides in relation to establishment on roots. Physiol Mol Plant Pathol 42:177–184

    Article  CAS  Google Scholar 

  • Donaldson SP, Deacon JW (1993b) Effects of amino acids and sugars on zoospore taxis, encystment and cyst germination in Pythium aphanidermatum (Edson) Fitzp, P. catenulatum Matthews and P. dissotocum Drechs. New Phytol 123:289–295

    Article  CAS  Google Scholar 

  • Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81:6656–6667

    Article  CAS  PubMed  Google Scholar 

  • Farr DF, Rossman AY (2015) Fungal databases, systematic mycology and microbiology laboratory. ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ http://nt.ars-grin.gov/fungaldatabases/

  • Folman LB, De Klein MJEM, Postma J, van Veen JA (2004) Production of antifungal compounds by Lysobacter enzymogenes isolate 3.1T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biol Control 31:145–154. doi:10.1016/j.biocontrol.2004.03.008

    Article  CAS  Google Scholar 

  • Gilbert GS, Handelsman J, Parke JL (1990) Role of ammonia and calcium in lysis of zoospores of Phytophthora cactorum by Bacillus cereus strain UW85. Exp Mycol 14:1–8

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Heungens K, Parke JL (2000) Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.) Appl Environ Microbiol 66:5192–5200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MT (2010) Morphology and behavior of the successive generations of secondary zoospores of the damping-off pathogen Aphanomyces cochlioides. J Plant Pathol 92:471–478

    Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack ALH (2011) The suppression of plant pathogens by vermicomposts. In: Sherman RL, Arancon NQ, Edwards CA (eds) Vermiculture technology: earthworms, organic wastes, and environmental management. CRC Press, Boca Raton, FL, pp 165–181

    Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 56:1029–1035. doi:10.1002/1526-4998(200012)56:12<1029::AID-PS238>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  • Kowalchuk GA, van Os GJ, van Aartrijk J, van Veen JA (2003) Microbial community responses to disease management soil treatments used in flower bulb cultivation. Biol Fertil Soils 37:55–63. doi:10.1007/s00374-002-0561-6

    Google Scholar 

  • Lam BA, Walton DB, Harris RN (2011) Motile zoospores of Batrachochytrium dendrobatidis move away from antifungal metabolites produced by amphibian skin bacteria. EcoHealth 8:36–45

    Article  PubMed  Google Scholar 

  • Lawton KA et al (2008) Analysis of the adult human plasma metabolome. Pharmacogenomics 9:383–397

    Article  CAS  PubMed  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224. doi:10.1016/j.soilbio.2008.04.013

    Article  CAS  Google Scholar 

  • Litterick AM, Harrier L, Wallace P, Watson CA, Wood M (2004) The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production - a review. CRC Crit Rev Plant Sci 23:453–479. doi:10.1080/07352680490886815

    Article  Google Scholar 

  • Liu Y, Zuo S, Zou Y, Wang J, Song W (2012) Investigation on diversity and population succession dynamics of indigenous bacteria of the maize spermosphere. World J Microbiol Biotechnol 28:391–396. doi:10.1007/s11274-011-0822-3

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–93. doi:10.1038/Nature11237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp: ecology, epidemiology, and prospects for biological control. CRC Crit Rev Plant Sci 18:111–181. doi:10.1016/s0735-2689(99)00389-5

    Article  CAS  Google Scholar 

  • Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81:557–564

    Article  CAS  PubMed  Google Scholar 

  • McKellar ME, Nelson EB (2003) Compost-induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69:452–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. doi:10.1126/science.1203980

    Article  CAS  PubMed  Google Scholar 

  • Mondal SN, Kageyama K, Hyakumachi M (1996) Decreased germinability and virulence of oospores of Pythium aphanidermatum in relation to loss of endogenous carbon during incubation in soil. Soil Biol Biochem 28:545–553

    Article  CAS  Google Scholar 

  • Morris BM, Gow NAR (1993) Mechanism of electrotaxis of zoospores of phytopathogenic fungi. Phytopathology 83:877–882. doi:10.1094/Phyto-83-877

    Article  CAS  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  CAS  PubMed  Google Scholar 

  • Nelson EB (2006) Rhizosphere regulation of preinfection behavior of oomycete plant pathogens. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the Rhizosphere. Springer-Verlag, Berlin, pp 311–341

    Chapter  Google Scholar 

  • Ofek M, Hadar Y, Minz D (2011) Colonization of cucumber seeds by bacteria during germination. Environ Microbiol 13:2794–2807. doi:10.1111/j.1462-2920.2011.02551.x

    Article  PubMed  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact 19:699–710. doi:10.1094/mpmi-19-0699

    Article  CAS  PubMed  Google Scholar 

  • Rout ME (2014) The plant microbiome. Adv Bot Res Volume 69:279–309. doi:10.1016/B978-0-12-417163-3.00011-1

    CAS  Google Scholar 

  • Shang HZ, Chen JJ, Handelsman J, Goodman RM (1999) Behavior of Pythium torulosum zoospores during their interaction with tobacco roots and Bacillus cereus. Curr Microbiol 38:199–204. doi:10.1007/pl00006787

    Article  CAS  PubMed  Google Scholar 

  • Sjogren J, Magnusson J, Broberg A, Schnurer J, Kenne L (2003) Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol 69:7554–7557. doi:10.1128/aem.69.12.7554-7557.2003

    Article  PubMed  PubMed Central  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow L, Bakker PAHM (2015) Microbial control of root-pathogenic fungi and oomycetes. In: Lugtenberg B (ed) principles of plant-microbe interactions. Springer international publishing, pp 165-173. doi:10.1007/978-3-319-08575-3_18

  • van Os GJ, van Ginkel JH (2001) Suppression of Pythium root rot in bulbous Iris in relation to biomass and activity of the soil microflora. Soil Biol Biochem 33:1447–1454. doi:10.1016/S0038-0717(01)00053-0

    Article  Google Scholar 

  • van West P et al (2002) Oomycete plant pathogens use electric fields to target roots. Mol Plant-Microbe Interact 15:790–798

    Article  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. The New Phytologist

  • Walker CA, van West P (2007) Zoospore development in the oomycetes. Fungal Biol Rev 21:10–18

    Article  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Windstam S, Nelson EB (2008a) Differential interference with Pythium ultimum sporangial activation and germination by Enterobacter cloacae in the corn and cucumber spermospheres. Appl Environ Microbiol 74:4285–4291. doi:10.1128/aem.00263-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windstam S, Nelson EB (2008b) Temporal release of fatty acids and sugars in the spermosphere: impacts on Enterobacter cloacae-induced biological control. Appl Environ Microbiol 74:4292–4299. doi:10.1128/aem.00264-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Paulitz TC (1993) In-vitro and in-vivo effects of Pseudomonas spp. on Pythium aphanidermatum zoospore behavior in exudates and on the rhizoplane of bacteria-treated cucumber roots. Phytopathology 83:872–876. doi:10.1094/Phyto-83-872

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mary Ann Karp, Eric Carr, Monica Minson, Hilary Davis and Lauren Nelson for general technical support. Chemical fractionation of seed exudate samples: Donna Gibson, Bioassay apparatus and seedling photo credits: Kent Loeffler and Claire Smith, statistical consulting: Francoise Vermeylen, qPCR technical support: Eric Markel, manuscript feedback: Emilie Chapelle, Irene de Bruijn, Xu Cheng, Ellen Crocker and the anonymous reviewers for Plant and Soil.

This work was supported by grants from the USDA SBIR [2008-33610-19027 and 2009-33610-20277] as a subcontract to the USDA SBIR principal investigator Thomas Herlihy with matching funds to E. Nelson as principal investigator from NYSTAR CAT (http://www.biotech.cornell.edu/cat); the NY Farm Viability Institute (www.nyfvi.org), the Organic Farming Research Foundation (www.ofrf.org), and USDA NIFA Hatch Funds [NYC-153543]. Additional support was provided to ALH Jack as a scholarship from the Organic Crop Improvement Association (www.ocia.org) and an Andrew W. Mellon fellowship through the Cornell University College of Agriculture and Life Sciences (http://cals.cornell.edu/academics/student-research/graduate-grants-proposal/). Commercial metabolomic analysis was funded by RT Solutions, LLC (www.wormpower.net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison L. H. Jack.

Ethics declarations

Conflicts of interest

A. Jack had a consulting contract with RT Solutions, LLC from January 1, 2013 to January 31, 2013. No other conflicts to report.

Additional information

Responsible Editor: Matthieu Barret.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jack, A.L.H., Nelson, E.B. A seed-recruited microbiome protects developing seedlings from disease by altering homing responses of Pythium aphanidermatum zoospores. Plant Soil 422, 209–222 (2018). https://doi.org/10.1007/s11104-017-3257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3257-2

Keywords

Navigation