Skip to main content

Advertisement

Log in

Phenotypic plasticity accounts for most of the variation in leaf manganese concentrations in Phytolacca americana growing in manganese-contaminated environments

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Phytolacca americana, a globally invasive species, is able to flourish in heavy metal-contaminated habitats. To improve understanding of the adaptive evolutionary mechanisms of plants under heavy metal stress, we investigated key factors contributing to variation in leaf manganese (Mn) content in P. americana.

Methods

Genetic surveys and common garden experiments were conducted simultaneously in an analysis of P. americana populations growing on Mn-contaminated and uncontaminated soil.

Results

Our field survey detected a significant relationship between leaf Mn concentrations in P. americana and concentrations in the soils from which plants were collected. Microsatellite analyses identified low levels of genetic diversity within and between populations; 32 of 39 populations (82 %) were genetically monomorphic. No genetic differentiation was detected between populations from contaminated and uncontaminated soils. Our common garden experiments showed that Mn concentrations in P. americana were related only to the growth habitat, regardless of the origin of the seeds.

Conclusions

Combining the results of our ecological and genetic analyses, we concluded that genetic variation is not likely to be responsible for the wide ecological distribution of P. americana in China. Rather, phenotypic plasticity is probably the major contributor to its successful colonisation of stressful habitats, such as heavy metal-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:2–85

    Google Scholar 

  • Armesto JJ, Cheplick GP, McDonnell MJ (1983) Observations on the reproductive biology of Phytolacca americana (Phytolaccaceae). J Torrey Bot Soc 110:380–383

    Article  Google Scholar 

  • Assunção AGL, Ten Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003) A cosegregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator Thlaspi caerulescens. New Phytol 159:383–390

    Article  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic, New York, pp 147–168

    Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediation of contaminated soil and water 8: 85–107

  • Bekessy SA, Ennos RA, Burgman MA, Newtonc AC, Ades PK (2003) Neutral DNA markers fail to detect genetic divergence in an ecologically important trait. Biol Conserv 110:267–275

    Article  Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, de Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    Article  CAS  Google Scholar 

  • Bone E, Farres A (2001) Trends and rates of microevolution in plants. Genetica 112:165–182

    Article  PubMed  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Bossdorf O, Arcuri D, Richards CL, Pigliucci M (2010) Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol Ecol 24:541–553

    Article  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals ed. CAB International

  • Brooks RR, Reeves RD, Baker AJM (1992) The serpentine vegetation of Goiás State, Brazil. In The Vegetation of Ultramafic (Serpentine) Soils. Intercept Ltd., U.K., pp 67–81

  • Cappa JJ, Pilon-Smits EAH (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275

    Article  CAS  PubMed  Google Scholar 

  • Conner JK, Hartl DL (2004) A primer of ecological genetics. Sinauer Associates, Sunderland

    Google Scholar 

  • Dechamps C, Roosens NH, Hotte C, Meerts P (2005) Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soil. Plant Soil 273:327–335

    Article  CAS  Google Scholar 

  • Deng J, Liao B, Ye M, Deng D, Lan C, Shu W (2007) The effects of heavy metal pollution on genetic diversity in zinc/cadmium hyperaccumulator Sedum alfredii populations. Plant Soil 297:83–92

    Article  CAS  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, USA

    Google Scholar 

  • Ernst WHO (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80:251–274

    Google Scholar 

  • Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fernando DR, Woodrow IE, Bakkaus EJ, Collins RN, Bakerm AJM, Batianoff GN (2007) Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293:145–152

    Article  CAS  Google Scholar 

  • Gao L, Peng KJ, Xia Y, Wang GP, Niu LY, Lian CL, Shen ZG (2013) Cadmium and manganese accumulation in Phytolacca americana L. and the roles of non-protein thiols and organic acids. Int J Phytoremediat 15:307–319

  • Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK, Lu BR, Song ZP (2007) Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol Invasions 9:245–256

    Article  Google Scholar 

  • Jiménez‐Ambriz G, Petit C, Bourrié I, Dubois S, Olivieri I, Ronce O (2007) Life history variation in the heavy metal tolerant plant Thlaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: role of gene flow, selection and phenotypic plasticity. New Phytol 173:199–215

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kilvitis HJ, Alvarez M, Foust CM, Schrey AW, Robertson M, Richards CL (2014) Ecological epigenetics. In: Landry CR, Aubin-Horth N (eds) Ecological genomics. Springer, New York, pp 191–210

    Chapter  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Kruckeberg AR (1967) Ecotypic response to ultramafic soils by some plant species of northwestern United States. Brittonia 19:133–151

    Article  Google Scholar 

  • Kuta E, Jędrzejczyk-Korycińska M, Cieślak E, Rostański A, Szczepaniak M, Migdałek G, Wąsowicz P, Suda J, Combik M, Słomka A (2014) Morphological versus genetic diversity of Viola reichenbachiana and V. riviniana (sect. Viola, Violaceae) from soils differing in heavy metal content. Plant Biol 16:925–934

    Article  Google Scholar 

  • Lefèbvre C, Vernet P (1990) Microevolutionary processes on contaminated deposits. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 286–297

    Google Scholar 

  • Lian CL, Abdul Wadud M, Geng Q, Shimatani K, Hogetsu T (2006) An improved technique for isolating codominant compound microsatellite markers. J Plant Res 119:415–417

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591–593

    Article  Google Scholar 

  • Liu XQ, Peng KJ, Wang AG, Lian CL, Shen ZG (2010) Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78:1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Macnair MR (2002) Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. New Phytol 155:59–66

    Article  CAS  Google Scholar 

  • Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105

    Article  CAS  Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. P Roy Soc B-Biol Sci 266:2175–2179

    Article  CAS  Google Scholar 

  • Marschner H (2011) Marschner's mineral nutrition of higher plants. Academic Press

  • McGrath SP, Zhao J, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  • McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291

    Article  Google Scholar 

  • McKay JK, Bishop JG, Lin JZ, Richards JH, Sala A, Mitchell-Olds T (2001) Local adaptation across a climatic gradient despite small effective population size in the rare sapphire rockcress. Proc R Soc Lond B 268:1715–1721

    Article  CAS  Google Scholar 

  • Mengoni A, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Mol Ecol 9:1319–1324

    Article  CAS  PubMed  Google Scholar 

  • Mengoni A, Barabesi C, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M (2001) Genetic diversity of heavy metal‐tolerant populations in Silene paradoxa L. (Caryophyllaceae): a chloroplast microsatellite analysis. Mol Ecol 10:1909–1916

    Article  CAS  PubMed  Google Scholar 

  • Meyer CL, Kostecka AA, Saumito-Laprade P, Créach A, Castric V, Pauwels M, Frérot H (2010) Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytol 185:130–142

    Article  CAS  PubMed  Google Scholar 

  • Muller LAH, Lambaerts M, Vangronsveld J, Colpaert JV (2004) AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus. New Phytol 164:297–303

    Article  CAS  Google Scholar 

  • Orrock JL (2005) The effect of gut passage by two species of avian frugivore on seeds of pokeweed, Phytolacca americana. Can J Bot 83:427–431

    Article  Google Scholar 

  • Pauwels M, Saumitou-Laprade P, Holl AC, Petit D, Bonnin I (2005) Multiple origin of metallicolous populations of the pseudometallophyte Arabidopsis halleri (Brassicaceae) in central Europe: the cpDNA testimony. Mol Ecol 14:4403–4414

    Article  CAS  PubMed  Google Scholar 

  • PCD (Pollution Control Department, Thailand) (1995) Notification of National Environmental Board No. 10, B.E 2538 (1995) under the Enhancement and Conservation of National Environmental Quality Act B.E.2535 (1992), published in the Royal Government Gazette No. 112 Part 52 dated May 25, B.E.2538. http://www.pcd.go.th/infoserv/en reg std airsnd01.html

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng K, Li X, Luo C, Shen Z (2006) Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China. J Environ Sci Health Pt A 41:65–76

    Article  CAS  Google Scholar 

  • Peng K, Luo C, You W, Lian C, Li X, Shen Z (2008) Manganese uptake and interactions with cadmium in the hyperaccumulator-Phytolacca americana L. J Hazard Mater 154:674–681

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Pollard AJ, Stewart HL, Roberson CB (2009) Manganese hyperaccumulation in Phytolacca americana L. from the Southeastern United States. Northeast Nat 16:155–162

  • Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217:8–17

    Article  PubMed  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2010) Documentation for Structure software. Version 2.3. University of Chicago, Chicago. Available at http://pritch.bsd.uchicago.edu/structure.html. Accessed 01 Dec 2014

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: RaskinI EBD (ed) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112:183–198

    Article  PubMed  Google Scholar 

  • Richards CL, Walls RL, Bailey JP, Parameswaran R, George T, Pigliucci M (2008) Plasticity in salt tolerance traits allows for invasion of novel habitat by Japanese knotweed sl (Fallopia japonica and F. × bohemica, Polygonaceae). Am J Bot 95:931–942

    Article  PubMed  Google Scholar 

  • Richards CL, Schrey AW, Pigliucci M (2012) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 15:1016–1025

    Article  PubMed  Google Scholar 

  • Scoville AG, Barnett LL, Bodbyl-Roels S, Kelly JK, Hileman LC (2011) Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus. New Phytol 191:251–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tie BQ, Yuan M, Tang MZ (2005) Phytolacca americana L.: a new manganese accumulator plant. J Agro Environ Sci 24:340–341

    CAS  Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Ward SM, Reid SD, Harrington J, Sutton J, Beck KG (2008) Genetic variation in invasive populations of Yellow Toadflax (Linaria vulgaris) in the western United States. Weed Sci 56:394–399

    Article  CAS  Google Scholar 

  • Williams JL, Auge H, Maron JL (2008) Different gardens, different results: native and introduced populations exhibit contrasting phenotypes across common gardens. Oecologia 157:239–248

    Article  PubMed  Google Scholar 

  • Wójcik M, Dresler S, Jawor E, Kowalczykb K, Tukiendorf A (2013) Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum. Chemosphere 90:1249–1257

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical standards

Funding

This work was financially supported by the National Natural Science Foundation of China (31400328), the Natural Science Foundation of Jiangsu Province (BK20140697), China’s Postdoctoral Science Foundation (2014 M560428) and Postdoctoral Science Foundation of Jiangsu Province (1402155C).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenguo Shen or Chunlan Lian.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 19 kb)

Table S2

(DOCX 18 kb)

Table S3

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhang, H., Wang, A. et al. Phenotypic plasticity accounts for most of the variation in leaf manganese concentrations in Phytolacca americana growing in manganese-contaminated environments. Plant Soil 396, 215–227 (2015). https://doi.org/10.1007/s11104-015-2581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2581-7

Keywords

Navigation