Skip to main content

Advertisement

Log in

No depth-dependence of fine root litter decomposition in temperate beech forest soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Subsoil organic carbon (OC) tends to be older and is presumed to be more stable than topsoil OC, but the reasons for this are not yet resolved. One hypothesis is that decomposition rates decrease with increasing soil depth. We tested whether decomposition rates of beech fine root litter varied with depth for a range of soils using a litterbag experiment in German beech forest plots.

Methods

In three study regions (Schorfheide-Chorin, Hainich-Dün and Schwäbische-Alb), we buried 432 litterbags containing 0.5 g of standardized beech root material (fine roots with a similar chemical composition collected from 2 year old Fagus sylvatica L. saplings, root diameter < 2 mm) at three different soil depths (5, 20 and 35 cm). The decomposition rates as well as the changes in the carbon (C) and nitrogen (N) concentrations of the decomposing fine root litter were determined at a 6 months interval during a 2 years field experiment.

Results

The amount of root litter remaining after 2 years of field incubation differed between the study regions (76 ± 2 % in Schorfheide-Chorin, 85 ± 2 % in Schwäbische-Alb, and 88 ± 2 % in Hainich-Dün) but did not vary with soil depth.

Conclusions

Our results indicate that the initial fine root decomposition rates are more influenced by regional scale differences in environmental conditions including climate and soil parent material, than by changes in microbial activities with soil depth. Moreover, they suggest that a similar potential to decompose new resources in the form of root litter exists in both surface and deep soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berg B (1984) Decomposition of root litter and some factors regulating the process: long-term root litter decomposition in a Scots pine forest. Soil Biol Biochem 16:609–617. doi:10.1016/0038-0717(84)90081-6

    Article  CAS  Google Scholar 

  • Birkhofer K, Schöning I, Alt F, Herold N, Klarner B, Maraun M, Marhan S, Oelmann Y, Wubet T, Yurkov A, Begerow D, Berner D, Buscot F, Daniel R, Diekötter T, Ehnes RB, Erdmann G, Fischer C, Foesel B, Groh J, Gutknecht J, Kandeler E, Lang C, Lohaus G, Meyer A, Nacke H, Näther A, Overmann J, Polle A, Pollierer MM, Scheu S, Schloter M, Schulze ED, Schulze W, Weinert J, Weisser WW, Wolters V, Schrumpf M (2012) General relationships between abiotic soil properties and soil biota across spatial scales and different land-Use types. PLoS ONE 7(8), e43292. doi:10.1371/journal.pone.0043292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brunner I, Godbold DL (2007) Tree roots in a changing world. J For Res 12:78–82. doi:10.1007/s10310-006-0261-4

    Article  Google Scholar 

  • Chen H, Harmon ME, Griffiths RP, Hicks W (2000) Effects of temperature and moisture on carbon respired from decomposing woody roots. For Ecol Manag 138:51–64. doi:10.1016/S0378-1127(00)00411-4

    Article  Google Scholar 

  • Dornbush ME, Isenhart TM, Raich JW (2002) Quantifying fine-root decomposition an alternative to buried litterbags. Ecology 83:2985–2990

    Article  Google Scholar 

  • Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch AI (2002) Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. J Geophys Res: Atmos 107:8222. doi:10.1029/2001jd000848

    Article  Google Scholar 

  • Dixon RK, Solomon A, Brown S, Houghton R, Trexier M, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Allen AS, Schimel JP, Holden PA (2003a) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob Chang Biol 9:1322–1332

    Article  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003b) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176. doi:10.1016/S0038-0717(02)00251-1

    Article  CAS  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485. doi:10.1016/j.baae.2010.07.009

    Article  Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280, http://www.nature.com/nature/journal/v450/n7167/suppinfo/nature06275_S1.html

    Article  CAS  PubMed  Google Scholar 

  • Gill R, Burke I (2002) Influence of soil depth on the decomposition of bouteloua gracilis roots in the shortgrass steppe. Plant Soil 241:233–242. doi:10.1023/a:1016146805542

    Article  CAS  Google Scholar 

  • Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat D (2010) Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecol Monogr 81:89–102

    Article  Google Scholar 

  • Grüneberg E, Schöning I, Kalko EKV, Weisser WW (2010) Regional organic carbon stock variability: a comparison between depth increments and soil horizons. Geoderma 155:426–433. doi:10.1016/j.geoderma.2010.01.002

    Article  Google Scholar 

  • Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hattenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221. doi:10.1038/nature13247

    Article  CAS  PubMed  Google Scholar 

  • Heim A, Frey B (2004) Early stage litter decomposition rates for Swiss forests. Biogeochemistry 70:299–313. doi:10.1007/s10533-003-0844-5

    Article  CAS  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Herold N, Schöning I, Berner D, Haslwimmer H, Kandeler E, Michalzik B, Schrumpf M (2014) Vertical gradients of potential enzyme activities in soil profiles of European beech, Norway spruce and Scots pine dominated forest sites. Pedobiologia 7:181–189

    Article  Google Scholar 

  • Hishi T (2007) Heterogeneity of individual roots within the fine root architecture: casual links between physiological and ecosystem functions. J For Res 12:126–133

    Article  Google Scholar 

  • Hobbie S, Oleksyn J, Eissenstat D, Reich P (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513. doi:10.1007/s00442-009-1479-6

    Article  PubMed  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi:10.2307/2641104

    Article  Google Scholar 

  • Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92:1052–1062. doi:10.1890/10-1307.1

    Article  PubMed  Google Scholar 

  • Li A, Fahey TJ, Pawlowska TE, Fisk MC, Burtis J (2015) Fine root decomposition, nutrient mobilization and fungal communities in a pine forest ecosystem. Soil Biol Biochem 83:76–83

    Article  CAS  Google Scholar 

  • Mendez-Millan M, Dignac MF, Rumpel C, Rasse DP, Derenne S (2010) Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13C labelling. Soil Biol Biochem 42:169–177. doi:10.1016/j.soilbio.2009.10.010

    Article  CAS  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795. doi:10.1016/S0038-0717(02)00168-2

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364. doi:10.1126/science.1134853

    Article  CAS  PubMed  Google Scholar 

  • Paul EA, Follett RF, Leavitt SW, Halvorson A, Peterson GA, Lyon DJ (1997) Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Sci Soc Am J 61:1058–1067. doi:10.2136/sssaj1997.03615995006100040011x

    Article  CAS  Google Scholar 

  • Qualls RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586

    Article  CAS  Google Scholar 

  • Raessler M, Rothe J, Hilke I (2005) Accurate determination of Cd, Cr, Cu and Ni in woodlice and their skins—is moulting a means of detoxification? Sci Total Environ 337:83–90. doi:10.1016/j.scitotenv.2004.07.008

    Article  CAS  PubMed  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Rovira P, Ramón Vallejo V (2002) Mineralization of carbon and nitrogen from plant debris, as affected by debris size and depth of burial. Soil Biol Biochem 34:327–339. doi:10.1016/S0038-0717(01)00186-9

    Article  CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. doi:10.1007/s11104-010-0391-5

    Article  CAS  Google Scholar 

  • Sanaullah M, Chabbi A, Leifeld J, Bardoux G, Billou D, Rumpel C (2011) Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference? Plant Soil 338:127–141. doi:10.1007/s11104-010-0554-4

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego

    Google Scholar 

  • Schöning I, Kögel-Knabner I (2006) Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biol Biochem 38:2411–2424. doi:10.1016/j.soilbio.2006.03.005

    Article  Google Scholar 

  • Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel-Knabner I, Schulze ED (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10:1675–1691. doi:10.5194/bg-10-1675-2013

    Article  CAS  Google Scholar 

  • Solly EF, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B, Müller J, Zscheischler J, Trumbore SE, Schrumpf M (2014) Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 382:203–218. doi:10.1007/s11104-014-2151-4

    Article  CAS  Google Scholar 

  • Sun T, Mao Z, Dong L, Hou L, Song Y, Wang X (2013) Further evidence for slow decomposition of very fine roots using two methods: litterbags and intact cores. Plant Soil 366:633–646. doi:10.1007/s11104-012-1457-3

    Article  CAS  Google Scholar 

  • Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G (2010) Direct and Indirect efects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem 42:1558–1565

    Article  CAS  Google Scholar 

  • Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411

    Article  Google Scholar 

  • Trumbore S (2009) Radiocarbon and soil carbon dynamics. Annu Rev Earth Planet Sci 37:47–66

    Article  CAS  Google Scholar 

  • van Huysen TL, Harmon ME, Perakis SS, Chen H (2013) Decomposition and nitrogen dynamics of 15 N-labeled leaf, root, and twig litter in temperate coniferous forests. Oecologia 173:1563–1573

    Article  PubMed  Google Scholar 

  • Weaver JE (1947) Rate of decomposition of roots and rhizomes of certain range grasses in undisturbed prairie soil. Ecology 28:221–240

    Article  Google Scholar 

  • Weaver JE, Hougen V, Weldon M (1935) Relation of root distribution to organic matter in prairie soil. Bot Gaz 96:389–420

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2005) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuel 20:388–393. doi:10.1021/ef0580117

    Article  Google Scholar 

Download references

Acknowledgments

We thank Steffen Both, Jörg Hailer and Uta Schumacher for their help with the field work and technical organization. The authors acknowledge Beate Michalzik and Carlos Sierra for their valuable comments on the manuscript. We thank Theresa Klötzing for technical support, and Ines Hilke and Birgit Fröhlich for the CN analysis. Jakob Zscheischler for the mathematical and statistical help. We thank the managers of the three Exploratories, Kirsten Reichel-Jung, Swen Renner, Katrin Hartwich, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Christiane Fischer and Simone Pfeiffer for giving support through the central office, Michael Owonibi for managing the central data base, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been funded by the DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (SCHR 1181/2-1) and the Max-Planck-Society. Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72 BbgNatSchG). Emily Solly conducted this work as part of the International Max Planck Research School for Global Biogeochemical Cycles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily F. Solly.

Additional information

Responsible Editor: Kees Jan van Groenigen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S5

Mean± SD of soil pH, soil texture and enzyme activities, in different soil horizons in the three study regions (data from Herold et al. (2014)). Significant differences between study regions are indicated by capital letters and between soil depths by lowercase letters according to Tukey HSD test (p < 0.05). Abbreviations: BG=ß-glucosidase activity, NAG=N-acetylglucosaminidase activity, Phos=phosphatase activity. (DOC 886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solly, E.F., Schöning, I., Herold, N. et al. No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil 393, 273–282 (2015). https://doi.org/10.1007/s11104-015-2492-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2492-7

Keywords

Navigation