Skip to main content
Log in

Further evidence for slow decomposition of very fine roots using two methods: litterbags and intact cores

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Root decomposition studies have rarely considered the heterogeneity within a fine-root system. Here, we investigated fine root (< 0.5 and 0.5–2 mm in diameter) decomposition and accompanying nutrient dynamics of two temperate tree species—Betula costata Trautv and Pinus koraiensis Sieb. et Zucc.

Methods

Both litterbag and intact-core techniques were used to examine decomposition dynamic and nutrient release of the two size class roots over a 498-day period. Moreover, we examined differences between the two approaches.

Results

The very fine roots (< 0.5 mm) with an initially lower C:N ratio, decomposed more slowly than 0.5–2 mm roots of both tree species. The differences in mass loss between size classes were smaller when using the intact-core technique compared with litterbag technique. In contrast to root biomass loss, net N release was much higher in the fine roots (< 0.5 mm). All fine roots initially released N (0–75 days), but immobilized N to varying extent in the following days (75–498 days) during decomposition.

Conclusions

Our results suggest that the slow decomposition rate of very fine roots (< 0.5 mm) may be determined by their high concentration of acid-unhydrolyzable structural components. Additionally, the heterogeneity within a bulk fine-root system could lead to differences in their contribution to soil in terms of carbon and nitrogen dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aber JD, Melillo JM (2001) Terrestrial ecosystems, 2nd edn. Harcourt-Academic Press, San Diego

    Google Scholar 

  • Bao SD (2000) The method of the soil and agriculture chemical analysis. China Agriculture Press, Beijing, in Chinese

    Google Scholar 

  • Berg B (1984) Decomposition of root litter and some factors regulating the process: long-term root litter decomposition in a Scots pine forest. Soil Biol Biochem 16:609–617

    Article  CAS  Google Scholar 

  • Berg B, Cortina J (1995) Nutrient dynamics in some decomposing leaf and needle litter types in a Pinus sylvestris forest. Scand J For Res 10:1–11

    Article  Google Scholar 

  • Berg B, McClaugherty C (1989) Nitrogen and phosphorus release from decomposing litter in relation to the disappearance of lignin. Can J Bot 67:1148–1156

    CAS  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter: decomposition humus formation, carbon sequestration. Springer, Berlin

    Google Scholar 

  • Blair JM (1988) Nutrient release from decomposing foliar litter of three tree species with special reference to calcium, magnesium and potassium dynamics. Plant Soil 110:49–55

    Article  CAS  Google Scholar 

  • Comas LH, Eissenstat DM, Lakso AN (2000) Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytol 147:171–178

    Article  CAS  Google Scholar 

  • Dornbush ME, Isenhart TM, Raich J (2002) Quantifying fine-root decomposition: an alternative to buried litterbags. Ecology 83:2985–2990

    Article  Google Scholar 

  • Dziadowiec H (1987) The decomposition of plant litterfall in a oak-linden-hornbeam forest and an oak-pine mixed forest of the Bialoweza national Park. Acta Soc Bot Pol 56:169–185

    Google Scholar 

  • Eissenstat DM, Volder A (2004) The efficiency of nutrient acquisition over the life of a root. In: BassiriRad H (ed) Nutrient acquisition by plants: an ecological perspective. Ecological studies 191. Springer, New York, pp 185–220

    Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Fahey TJ, Hughes JW, Pu M, Arthur MA (1988) Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest. For Sci 34:744–768

    Google Scholar 

  • Fan PP, Guo DL (2010) Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia 163:509–515

    Article  PubMed  Google Scholar 

  • Fernandez CW, Koide RT (2012) The role of chitin in the decomposition of ectomycorrhizal fungal litter. Ecology 93:24–28

    Article  PubMed  Google Scholar 

  • Fisk MC, Fahey TJ, Sobieraj JH, Staniec AC, Crist TO (2011) Rhizosphere disturbance influences fungal colonization and community development on dead fine roots. Plant Soil 341:279–293

    Article  CAS  Google Scholar 

  • Fujii S, Takeda H (2010) Dominant effects of litter substrate quality on the difference between leaf and root decomposition process above- and belowground. Soil Biol Biochem 42:2224–2230

    Article  CAS  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM (2011) Decomposition of the finest root branching orders: linking carbon and nutrient dynamics belowground to fine root function and structure. Ecol Monogr 81:89–102

    Article  Google Scholar 

  • Gong ZT, Chen ZC, Luo GB, Zhang GL, Zhao WJ (1999) Soil reference with Chinese soil taxonomy. Soils 31:57–63 (in Chinese)

    Google Scholar 

  • Guo DL, Mitchell RJ, Hendricks JJ (2004) Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140:450–457

    Article  PubMed  Google Scholar 

  • Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008a) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673–683

    Article  PubMed  Google Scholar 

  • Guo DL, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008b) Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol 96:737–745

    Article  CAS  Google Scholar 

  • Harmon ME, Silver WL, Fasth B, Chen H, Burke IC, Parton WJ, Hart SC, Currie WS (2009) Long-term patterns of mass loss during the decomposition of leaf and fine root litter: and intersite comparison. Glob Chang Biol 15:1320–1338

    Article  Google Scholar 

  • Hart SC, Firestone MK, Paul EA (1992) Decomposition and nutrient dynamics of ponderosa pine needles in a Mediterranean-type climate. Can J For Res 22:306–314

    Article  CAS  Google Scholar 

  • Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000) Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems 3:57–69

    Article  CAS  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57

    Article  Google Scholar 

  • Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8:644–656

    Article  CAS  Google Scholar 

  • Hobbie SE (2008) Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89:2633–2644

    Article  PubMed  Google Scholar 

  • Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–2297

    Article  PubMed  Google Scholar 

  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513

    Article  PubMed  Google Scholar 

  • Jackson RB, Mooney HA, Schultze E-D (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci U S A 94:7362–7366

    Article  PubMed  CAS  Google Scholar 

  • Joslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ (2006) Fine root turnover patterns and their relationship to root diameter and soil depth in a 14C-labelled hardwood forest. New Phytol 172:523–535

    Article  PubMed  CAS  Google Scholar 

  • King JS, Allen HL, Dougherty P, Strain BR (1997) Decomposition of roots in loblolly pine: effects of nutrient and water availability and root size class on mass loss and nutrient dynamics. Plant Soil 195:171–184

    Article  CAS  Google Scholar 

  • Koide RT, Fernandez CW, Peoples MS (2011) Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition? New Phytol 191:508–514

    Article  PubMed  Google Scholar 

  • Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312

    Article  Google Scholar 

  • Laskowski R, Niklinska M, Maryanski M (1995) The dynamics of chemical elements in forest litter. Ecology 76:1393–1406

    Article  Google Scholar 

  • Lemma B, Nilsson I, Kleja DB, Olsson M, Knicker H (2007) Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biol Biochem 39:2317–2328

    Article  CAS  Google Scholar 

  • Li XF, Han SJ, Zhang Y (2007) Foliar decomposition in a broadleaf-mixed Korean pine (Pinus koraiensis Sieb. Et Zucc) plantation forest: the impact of initial litter quality and the decomposition of three kinds of organic matter fraction on mass loss and nutrient release rates. Plant Soil 295:151–167

    Article  CAS  Google Scholar 

  • Lin CF, Yang YS, Guo JF, Chen GS, Xie JS (2011) Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions. Plant Soil 338:311–327

    Article  CAS  Google Scholar 

  • Lõhmus K, Ivask M (1995) Decompostion and nitrogen dynamics of fine roots of Norway spruce (Picea abies (L.) Karst.) at different sites. Plant Soil 168–169:89–94

    Article  Google Scholar 

  • Majdi H, Pregitzer KS, Morén A-S, Nylund J-E, Ågren GI (2005) Measuring fine root turnover in forest ecosystems. Plant Soil 276:1–8

    Article  CAS  Google Scholar 

  • Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009) Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol 29:579–585

    Article  PubMed  CAS  Google Scholar 

  • McClaugherty CA, Aber JD, Mellilo JM (1984) Decomposition dynamics of fine roots in forested ecosystems. Oikos 42:378–386

    Article  CAS  Google Scholar 

  • Ostertag R, Hobbie SE (1999) Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability. Oecologia 121:564–573

    Article  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Carol Adair E, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  PubMed  CAS  Google Scholar 

  • Pollierer MM, Lange R, Körner C, Maraun M, Scheu S (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736

    Article  PubMed  Google Scholar 

  • Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997) Relationship among root branch order, carbon, and nitrogen in four temperate species. Oecologia 111:302–308

    Article  Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    Article  PubMed  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Raich JW, Russell AE, Valverde-Barrantes O (2009) Fine root decay rates vary widely among lowland tropical tree species. Oecologia 161:325–330

    Article  PubMed  Google Scholar 

  • Ruark GA (1993) Modeling soil temperature effects on in situ decomposition rates for fine roots of loblolly pine. For Sci 39:118–129

    Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE (2003) Coupling fine root dynamics with ecosystem nutrient cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–662

    Article  Google Scholar 

  • Ryan MG, Melillo JM, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Can J For Res 20:166–171

    Article  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Google Scholar 

  • Sun T, Mao ZJ (2011) Functional relationships between morphology and respiration of fine roots in two Chinese temperate tree species. Plant Soil 346:375–384

    Article  CAS  Google Scholar 

  • Talbot JM, Treseder KK (2012) Interactions between lignin, cellouse, and nitrogen drive litter chemistry-decay relationships. Ecology 93(2):345–354

    Article  PubMed  Google Scholar 

  • Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008) Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). Am J Bot 95:1506–1514

    Article  PubMed  Google Scholar 

  • Valenzuela-Estrada LR, Richards JH, Diaz A, Eissensat DM (2009) Patterns of nocturnal rehydration in root tissues of Vaccinium corymbosum L. under severe drought conditions. J Exp Bot 60:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Vogt KA, Persson H (1991) Measuring growth and development of roots. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boston, pp 477–501

    Google Scholar 

  • Vogt KA, Dahlgren R, Ugolini F, Zabowski D, Moore EE, Zasoski R (1987) Aluminum, Fe, Ca, Mg, K, Mn, Cu, Zn and P in above- and belowground biomass. I. Abies amabilis and Tsuga mertensiana. Biogeochemistry 4:277–294

    Article  CAS  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Wang ZQ, Guo DL, Wang X, Gu J, Mei L (2006) Fine root architecture, morphology, and biomass of diVerent branch orders of two Chinese temperate tree species. Plant Soil 288:151–171

    Google Scholar 

  • Watanabe T, Osaki M, Tadano T (1998) Effects of nitrogen source and aluminum on growth of tropical tree seedlings adapted to low pH soils. Soil Sci Plant Nutr 44:655–666

    Article  CAS  Google Scholar 

  • Wells CE, Eissenstat DM (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82:882–893

    Article  Google Scholar 

  • Wells CE, Eissenstat DM (2003) Beyond the roots of young seedlings: the influence of age and order on fine root physiology. J Plant Growth Regul 21:324–334

    Article  Google Scholar 

  • Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparisons of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76:381–397

    Article  Google Scholar 

  • Xu XN, Hirata E (2005) Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 273:279–289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Guohua Song, Quanbo Wang for assistance in the field. We also thank Drs. Björn Berg for suggestions that improved earlier versions of this work and anonymous reviewers for greatly improving the manuscript with their valuable comments. The funding for this research was supported by National Basic Research Program (973 Program) (2010CB951301), National Natural Science Foundation of China (31070350) and Fundamental Research Funds for the Central Universities (DL11BA10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijun Mao.

Additional information

Responsible Editor: Alfonso Escudero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, T., Mao, Z., Dong, L. et al. Further evidence for slow decomposition of very fine roots using two methods: litterbags and intact cores. Plant Soil 366, 633–646 (2013). https://doi.org/10.1007/s11104-012-1457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1457-3

Keywords

Navigation