Skip to main content
Log in

An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Salinization of soils causes severe problems to plant growth. With the important role of stoichiometry in many ecological processes, this study investigated the effect of an asexual Epichloë endophyte on the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress.

Methods

Plants with (E+) and without endophyte (E−) were subjected to different NaCl treatments (0, 150, 300, 450 and 600 mM). After 15 days, the dry weight as well as the carbon (C), nitrogen (N), phosphorus (P), sodium (Na+) and potassium (K+) contents in the plants were determined.

Results

Salt stress significantly reduced the growth and nutrient absorption of wild barley. The biomass as well as the N, P and K+ contents were higher while the Na+ content was lower in E+ plants than in E− plants. However, there was no significant effect on C content between E+ and E− plants. The findings also showed that E+ plants had lower ratios of C:N, C:P, Na+:K+ and a higher ratio of N:P than E− plants.

Conclusions

The Epichloë endophyte played an important role in maintaining the growth of the host plants by promoting nutrient absorption and adjusting the ionic balance. The results have enhanced knowledge of the application of endophytes that will enable better crop production and ecological conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ 44:123–141

    Article  Google Scholar 

  • Balba AM (1995) Management of problem soils in arid ecosystems. Press, CRC

    Google Scholar 

  • Bates B, Kundzewicz ZW, Wu S, Palutikof J (2008) Climate change and water. Intergovernmental Panel on Climate Change (IPCC).

  • Beckett R, Hoddinott N (1997) Seasonal variations in tolerance to ion leakage following desiccation in the moss Atrichum androgynum from a KwaZulu-Natal afromontane forest. S Afr J Bot 63:276–279

    CAS  Google Scholar 

  • Belesky D, Stuedemann J, Plattner R, Wilkinson S (1988) Ergopeptine alkaloids in grazed tall fescue. Agron J 80:209–212

    Article  CAS  Google Scholar 

  • Berman-Frank I, Dubinsky Z (1999) Balanced growth in aquatic plants: myth or reality? Bioscience 49:29–37

    Article  Google Scholar 

  • Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blankenship JD, Spiering MJ, Wilkinson HH, Fannin FF, Bush LP, Schardl CL (2001) Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 58:395–401

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cabot C, Sibole JV, Barceló J, Poschenrieder C (2014) Lessons from crop plants struggling with salinity. Plant Sci. doi:10.1016/j.plantsci.2014.04.013

    PubMed  Google Scholar 

  • Chen MM, Yin HB, O'Connor P, Wang YS, Zhu YG (2010) C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant Soil 326:21–29

    Article  CAS  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    Article  CAS  PubMed  Google Scholar 

  • Davitt AJ, Stansberry M, Rudgers JA (2010) Do the costs and benefits of fungal endophyte symbiosis vary with light availability? New Phytol 188:824–834

    Article  PubMed  Google Scholar 

  • Elser JJ, Hamilton A (2007) Stoichiometry and the new biology: the future is now. PLoS Biol 5:e181

    Article  PubMed Central  PubMed  Google Scholar 

  • Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996) Organism size, life history, and N: P stoichiometry. Bioscience 674–684

  • Elser J, O'brien W, Dobberfuhl D, Dowling T (2000a) The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. J Evol Biol 13:845–853

    Article  Google Scholar 

  • Elser J, Sterner R, Gorokhova E, Fagan W, Markow T, Cotner J, Harrison J, Hobbie S, Odell G, Weider L (2000b) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    Article  Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    Article  PubMed  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey T (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

  • Franks PJ, Buckley TN, Shope JC, Mott KA (2001) Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. Plant Physiol 125:1577–1584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita Y, Robroek BJ, De Ruiter PC, Heil GW, Wassen MJ (2010) Increased N affects P uptake of eight grassland species: the role of root surface phosphatase activity. Oikos 119:1665–1673

    Article  CAS  Google Scholar 

  • Gundel PE, Omacini M, Sadras VO, Ghersa CM (2010) The interplay between the effectiveness of the grass-endophyte mutualism and the genetic variability of the host plant. Evol Appl 3:538–546

    Article  PubMed Central  PubMed  Google Scholar 

  • Gundel PE, Perez LI, Helander M, Saikkonen K (2013) Symbiotically modified organisms: nontoxic fungal endophytes in grasses. Trends Plant Sci 18:420–427

    Article  CAS  PubMed  Google Scholar 

  • Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Hanway J, Heidel H (1952) Soil analysis methods as used in Iowa state college soil testing laboratory. Iowa Agric 57:1–31

    Google Scholar 

  • Hessen D, Jensen T, Kyle M, Elser J (2007) RNA responses to N- and P-limitation; reciprocal regulation of stoichiometry and growth rate in Brachionus. Funct Ecol 21:956–962

    Article  Google Scholar 

  • Hunt MG, Rasmussen S, Newton PC, Parsons AJ, Newman JA (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production. Plant Cell Environ 28:1345–1354

    Article  CAS  Google Scholar 

  • Joshi SS (1984) Effect of salinity stress on organic and mineral constituents in the leaves of pigeonpea (Cajanus cajan L. var. C-11). Plant Soil 82:69–76

    Article  CAS  Google Scholar 

  • Khan MH, Meghvansi MK, Gupta R, Veer V, Singh L, Kalita MC (2014) Foliar spray with vermiwash modifies the arbuscular mycorrhizal dependency and nutrient stoichiometry of bhut jolokia (Capsicum assamicum). PLoS One 9:e92318

    Article  PubMed Central  PubMed  Google Scholar 

  • Koerselman W, Meuleman AF (1996) The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Article  Google Scholar 

  • Leuchtmann A, Schardl CL, White JF, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia. doi:10.3852/13-251

    PubMed  Google Scholar 

  • Li CJ, Nan ZB, Gao JH, Tian P (2004) Detection and distribution of Neotyphodium-Achnatherum inebrians association in China. Proceedings of 5th international Neotyphodium/grass interactions symposium Arkansas.

  • Li CJ, Nan ZB, Li F (2008) Biological and physiological characteristics of Neotyphodium gansuense symbiotic with Achnatherum inebrians. Microbiol Res 163:431–440

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ren AZ, Han R, Yin LJ, Wei MY, Gao YB (2012) Endophyte-mediated effects on the growth and physiology of Achnatherum sibiricum are conditional on both N and P availability. PLoS One 7:e48010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Q, Yue LJ, Zhang JL, Wu GQ, Bao AK, Wang SM (2012) Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol 32:4–13

    Article  CAS  PubMed  Google Scholar 

  • Maas E, Nieman R (1978) Physiology of plant tolerance to salinity. Crop tolerance to suboptimal land conditions: 277–299

  • Maathuis FJ, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Malinowski D, Leuchtmann A, Schmidt D, Nösberger J (1997) Growth and water status in meadow fescue is affected by Neotyphodium and Phialophora species endophytes. Agron J 89:673–678

    Article  Google Scholar 

  • Malinowski D, Belesky D, Hill N, Baligar V, Fedders J (1998) Influence of phosphorus on the growth and ergot alkaloid content of Neotyphodium coenophialum-infected tall fescue (Festuca arundinacea Schreb.). Plant Soil 198:53–61

    Article  CAS  Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Monnet F, Vaillant N, Hitmi A, Coudret A, Sallanon H (2001) Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne. Physiol Plant 113:557–563

    Article  CAS  Google Scholar 

  • Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127

    Article  PubMed Central  PubMed  Google Scholar 

  • Newman J, Abner M, Dado R, Gibson D, Brookings A, Parsons A (2003) Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Glob Chang Biol 9:425–437

    Article  Google Scholar 

  • Niinemets Ü, Valladares F, Ceulemans R (2003) Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive Ilex aquifolium co-occurring at two contrasting European sites. Plant Cell Environ 26:941–956

    Article  PubMed  Google Scholar 

  • Peng QQ (2012) Effect of Neotyphodium endophyte on chilling tolerance to Festuca sinensis. MSc dissertation, Lanzhou University, China (In Chinese, with English abstract).

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581–1581

    Article  CAS  PubMed  Google Scholar 

  • Reza Sabzalian M, Mirlohi A (2010) Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. J Plant Nutr Soil Sci 173:952–957

    Article  CAS  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rong Q, Liu J, Cai Y, Lu Z, Zhao Z, Yue W, Xia J (2014) Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland, China. Ecol Eng. doi: 10.1016/j.ecoleng.2014.03.002.

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428–433

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Article  Google Scholar 

  • Saikkonen K, Gundel PE, Helander M (2013) Chemical Ecology Mediated by Fungal Endophytes in Grasses. J Chem Ecol 39:962–968

    Article  CAS  PubMed  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012) The C: N: P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol 14:33–47

    Article  Google Scholar 

  • Schachtman D, Liu W (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4:281–287

    Article  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Song ML, Li XZ, Saikkonen K, Li CJ, Nan ZB (2015) An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. Fungal Ecol 13:44–52. doi:10.1016/j.funeco.2014.07.004

    Article  Google Scholar 

  • Sparks DL, Page A, Helmke P, Loeppert R, Soltanpour P, Tabatabai M, Johnston C, Sumner M (1996) Methods of soil analysis. Part 3-Chemical methods. Soil Science Society of America Inc.

  • Sterner RW (1995) Elemental stoichiometry of species in ecosystems. Springer, Linking Species & Ecosystems

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • von Oheimb G, Power SA, Falk K, Friedrich U, Mohamed A, Krug A, Boschatzke N, Härdtle W (2010) N: P ratio and the nature of nutrient limitation in Calluna-dominated heathlands. Ecosystems 13:317–327

    Article  CAS  Google Scholar 

  • Vrede T, Dobberfuhl DR, Kooijman S, Elser JJ (2004) Fundamental connections among organism C: N: P stoichiometry, macromolecular composition, and growth. Ecology 85:1217–1229

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang SM, Zhao GQ, Gao YS, Tang ZC, Zhang CL (2004) Puccinellia tenuiflora exhibits stronger selectivity for K+ over Na+ than wheat. J Plant Nutr 27:1841–1857

    Article  CAS  Google Scholar 

  • Wang CM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, Flowers TJ, Wang SM (2009) Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell Environ 32:486–496

    Article  CAS  PubMed  Google Scholar 

  • Zhang XX (2012) Response of Achnatherum inebrians/Neotyphodium gansuense symbiont to stresses and secondary metabolites activities. PhD dissertation, Lanzhou University, China (In Chinese, with English abstract).

  • Zhang XX, Li CJ, Nan ZB (2010) Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J Hazard Mater 175:703–709

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by National Basic Research Program of China (2014CB138702), the Natural Science Foundation of China (31372366) and Program for Changjiang Scholars and Innovative Research Team in University of China (IRT13019). The authors would like to thank Chunping Zhang, Yahong Lei, Hui Lv and Shulan Su for their help of sample collecting and analyzing. Thanks to Richard Johnson for constructive comments which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjie Li.

Additional information

Responsible Editor: Frans J.M Maathuis .

Meiling Song and Qing Chai contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Chai, Q., Li, X. et al. An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 387, 153–165 (2015). https://doi.org/10.1007/s11104-014-2289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2289-0

Keywords

Navigation