Skip to main content

Advertisement

Log in

Identification and expression analyses of calmodulin-binding transcription activator genes in soybean

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Environmental stresses are major hurdles for the production of soybean (Glycine max), a major food crop that is able to acquire N and P nutrients through symbiotic association with rhizobia and arbuscular mycorhizal fungi. The calmodulin-binding transcription activators (CAMTA) belong to a transcription factor family that plays critical roles in plant responses to both abiotic and biotic stresses such as drought, cold and attacks from pathogens and insects. Our current knowledge about CAMTA genes in soybean is scarce, but is of critical significance to the improvement of stress tolerance and production of soybean, a worldwide major protein-rich food crop.

Methods

In this study, we first searched for all the CAMTA homologous genes in the whole genome of soybean. We then surveyed the distribution of stress-related cis-regulatory elements in the −1.5 kb promoter regions of all GmCAMTA genes. Next, we analyzed the expression patterns of all these GmCAMTAs in root and leaf tissues and studied how they respond to various stress treatments by quantitative RT-PCR.

Results

Fifteen genes in the soybean genome were identified to encode CAMTA proteins, and their gene structures and protein sequences were highly similar to that in Arabidopsis. Like their counterparts in other plants and animals, all GmCAMTAs contain a CG-1 DNA-binding domain in the N terminal region, followed by a TIG domain, ankyrin repeats, IQ motifs and a calmodulin binding site. All GmCAMTA genes were found to be expressed in root and leaf tissues. The expression of all GmCAMTAs was induced by salinity. Most of the GmCAMTA genes were induced by several stresses and hormone signals including dehydration, cold, H2O2, abscisic acid, salicylic acid, and methyl jasmonate. Only four GmCAMTAs (GmCAMTA5, 6, 7 and 10) were found to be repressed by H2O2 treatment. Consistent with their responsiveness to all these stimuli, many stress-related cis-elements were found in the promoter regions of all the GmCAMTA genes.

Conclusions

These results indicate that GmCAMTA genes are responsive to various stress and hormone signals, and likewise, GmCAMTAs could act as critical components in regulating soybean tolerances to various environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. BBA-Gen Subj 1820:1283–1293

    Article  Google Scholar 

  • Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277:21851–21861

    Article  CAS  PubMed  Google Scholar 

  • Bouche N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. BBA-Gene Regul Mech 1819:120–128

    CAS  Google Scholar 

  • Choi MS, Kim MC, Yoo JH, Moon BC, Koo SC, Park BO, Lee JH, Koo YD, Han HJ, Lee SY, Chung WS, Lim CO, Cho MJ (2005) Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.). J Biol Chem 280:40820–40831

    Article  CAS  PubMed  Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    Article  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du L, Poovaiah BW (2004) A novel family of Ca2+/calmodulin-binding proteins involved in transcriptional regulation: interaction with fsh/Ring3 class transcription activators. Plant Mol Biol 54:549–569

    Article  CAS  PubMed  Google Scholar 

  • Du L, Poovaiah BW (2005) Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437:741–745

    Article  CAS  PubMed  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy ASN, Poovaiah BW (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1158

    Article  CAS  PubMed  Google Scholar 

  • Du L, Yang T, Puthanveettil SV, Poovaiah BW (2011) Decoding of calcium signal through calmodulin: calmodulin-binding proteins in plants. In: Luan S (ed) Coding and decoding of calcium signals in plants. Springer, Berlin, pp 177–233

    Chapter  Google Scholar 

  • Fan XD, Wang JQ, Yang N, Dong YY, Liu L, Wang FW, Wang N, Chen H, Liu WC, Sun YP, Wu JY, Li HY (2013) Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. Gene 512:392–402

    Article  CAS  PubMed  Google Scholar 

  • Finkler A, Ashery-Padan R, Fromm H (2007) CAMTAs: calmodulin-binding transcription activators from plants to human. Febs Lett 581:3893–3898

    Article  CAS  PubMed  Google Scholar 

  • Galon Y, Nave R, Boyce JM, Nachmias D, Knight MR, Fromm H (2008) Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. Febs Lett 582:943–948

    Article  CAS  PubMed  Google Scholar 

  • Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouche N, Knight MR, Fromm H (2010a) Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232:165–178

    Article  CAS  PubMed  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010b) Calcium-regulated transcription in plants. Mol Plant 3:653–669

    Article  CAS  PubMed  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Han J, Gong P, Reddig K, Mitra M, Guo P, Li HS (2006) The fly CAMTA transcription factor potentiates deactivation of rhodopsin, a G protein-coupled light receptor. Cell 127:847–858

    Article  CAS  PubMed  Google Scholar 

  • Hobo T, Asada M, Kowyama Y, Hattori T (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19:679–689

    Article  CAS  PubMed  Google Scholar 

  • Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J Cell Sci 115:4891–4900

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K (1995) Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet 247:391–398

    Article  CAS  PubMed  Google Scholar 

  • Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes in-duced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376

    Article  CAS  PubMed  Google Scholar 

  • Koo SC, Choi MS, Chun HJ, Shin DB, Park BS, Kim YH, Kim MC (2009) The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice. Mol Cells 27:563–570

    Article  CAS  PubMed  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kulcheski FR, de Oliveira LF, Molina LG, Almerao MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimaraes FC, Abdelnoor RV, Nascimento LC, Carazzolle MF, Pereira GA, Margis R (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laluk K, Prasad KV, Savchenko T, Celesnik H, Dehesh K, Levy M, Mitchell-Olds T, Reddy AS (2012) The calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis. Plant Cell Physiol 53:2008–2015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Gaxiola R (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Peng T, Dai W (2013) Critical cis-acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants. Plant Mol Biol Rep 32:303–317

    Article  Google Scholar 

  • Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  CAS  PubMed  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran LSP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:305–314

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Pittman JK (2009) New Phytol 181:275–294

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N, Isono T, Sato MH (2003) Arabidopsis CAMTA family proteins enhance V-PPase expression in pollen. Plant Cell Physiol 44:975–981

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71

    Article  CAS  Google Scholar 

  • Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D (2012) SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN 3. Plant Physiol 158:1847–1859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oldroyd GE, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2013) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49

    Article  PubMed  Google Scholar 

  • Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, Patre UV, Sawant SV (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 14:216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pieterse CM, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

    Article  CAS  PubMed  Google Scholar 

  • Poovaiah BW, Du L, Wang H, Yang T (2013) Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Plant Physiol 163:531–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci U S A 104:4730–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu YJ, Xi J, Du LQ, Suttle JC, Poovaiah BW (2012) Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3. Plant Mol Biol 79:89–99

    Article  CAS  PubMed  Google Scholar 

  • Reddy ASN (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    Article  CAS  PubMed  Google Scholar 

  • Reddy ASN, Reddy VS, Golovkin M (2000) A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem Biophys Res Commun 279:762–69

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X (2009) DOG 1.0: illustrator of protein domain structures. Cell Res 19:271–273

    Article  CAS  PubMed  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev 15:2122–2133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Song K, Backs J, McAnally J, Qi X, Gerard RD, Richardson JA, Hill JA, Bassel-Duby R, Olson EN (2006) The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 125:453–466

    Article  CAS  PubMed  Google Scholar 

  • Tran LSP, Mochida K (2010) Functional genomics of soybean for improvement of productivity in adverse conditions. Func Integr Genomic 10:447–462

    Article  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Valdes-Lopez O, Thibivilliers S, Qiu J, Xu WW, Nguyen TH, Libault M, Le BH, Goldberg RB, Hill CB, Hartman GL, Diers B, Stacey G (2011) Identification of quantitative trait loci controlling gene expression during the innate immunity response of soybean. Plant Physiol 157:1975–1986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams ME, Foster R, Chua NH (1992) Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell 4:485–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2000) An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J Biol Chem 275:38467–38473

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Peng H, Whitaker BD, Conway WS (2012) Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC Plant Biol 12:19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang T, Peng H, Whitaker BD, Jurick WM (2013) Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit. Physiol Plant 148:445–455

    Article  CAS  PubMed  Google Scholar 

  • Zeng HQ, Zhu YY, Huang SQ, Yang ZM (2010) Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol 167:1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Liu G, Kinoshita T, Zhang R, Zhu Y, Shen Q, Xu G (2012) Stimulation of phosphorus uptake by ammonium nutrition involves plasma membrane H+ ATPase in rice roots. Plant Soil 357:205–214

    Article  CAS  Google Scholar 

  • Zeng H, Feng X, Wang B, Zhu Y, Shen Q, Xu G (2013) Citrate exudation induced by aluminum is independent of plasma membrane H+-ATPase activity and coupled with potassium efflux from cluster roots of phosphorus-deficient white lupin. Plant Soil 366:389–400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. U1130304 and No. 31201679) and US National Science Foundation (No. 1021344).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houqing Zeng or Liqun Du.

Additional information

Responsible Editor: John Hammond.

Guoping Wang and Houqing Zeng equally contributed to this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zeng, H., Hu, X. et al. Identification and expression analyses of calmodulin-binding transcription activator genes in soybean. Plant Soil 386, 205–221 (2015). https://doi.org/10.1007/s11104-014-2267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2267-6

Keywords

Navigation