Skip to main content
Log in

Unintended effects of biochars on short-term plant growth in a calcareous soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Biochar has demonstrably improved crop yields in weathered and acidic soils, but studies in calcareous soils are particularly lacking, so biochar effects on plant growth was investigated under these conditions.

Methods

Six biochars were obtained from different feedstocks and production technologies. Chemical characterization of fresh biochars included total and extractable nutrients, labile carbon, and Fourier transform infrared spectroscopy. Extractable nutrients were also evaluated in biochar-soil mixtures with a basic (pH >8.2) test soil. Bioassays with lettuce and ryegrass were carried out to relate biochar chemical properties to effects on plant biomass.

Results

A sewage sludge slow pyrolysis char was stimulatory to plant growth, as was a slow pyrolysis pine wood char at an intermediate concentration, while gasification and fast-pyrolysis pine and poplar wood chars were strongly inhibitory, with reductions in biomass at realistic application rates of 5–19 t ha−1.

Conclusions

Statistical comparison of plant responses with biochar composition led to the assessment that plant responses were most correlated with volatile matter content and total P content, whose availability was likely regulated by pH and Ca content. Potential effects of phytotoxins were considered, but these were seen to be much less probable than effects due to nutrient availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amonette JE, Joseph S (2009) Characteristics of biochar: microchemical properties. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 33–52

    Google Scholar 

  • Arnold WR, Cotsifas JS (2008) An assessment of the application factor used to derive the saltwater acute ambient water quality copper criterion. Integr Environ Assess Manag 4:252–254. doi:10.1897/IEAM_2007-053

    Article  CAS  PubMed  Google Scholar 

  • Asai H, Samson BK, Stephan HM et al (2009) Biochar amendment techniques for upland rice production in Northern Laos. 1. soil physical properties, leaf SPAD and grain yield. Field Crop Res 111:81–84

    Article  Google Scholar 

  • ASTM International (2007) D1762-84: Standard test method for chemical analysis of wood charcoal. ASTM International, PA

    Google Scholar 

  • Blackwell P, Riethmuller G, Collins M (2009) Biochar application to soil. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 207–226

    Google Scholar 

  • Blackwell P, Krull E, Butler G et al (2010) Effect of banded biochar on dryland wheat production and fertiliser use in South-Western Australia: an agronomic and economic perspective. Soil Res 48:531–545

    Article  Google Scholar 

  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28:386–396. doi:10.1002/ep

    Article  CAS  Google Scholar 

  • Bridle TR, Pritchard D (2004) Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci Technol 50:169–175

    CAS  PubMed  Google Scholar 

  • Brookes PC, Joergensen RG (2006) Microbial biomass measurements by fumigation-extraction. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbial methods for assessing soil quality. CABI Publishing, King’s Lynn, pp 77–83

    Google Scholar 

  • Bruun S, Jensen E, Jensen L (2008) Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration. Org Geochem 39:839–845. doi:10.1016/j.orggeochem.2008.04.020

    Article  CAS  Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79. doi:10.1016/j.soilbio.2011.11.019

    Article  CAS  Google Scholar 

  • Carreira JA, Lajtha K (1997) Factors affecting phosphate sorption along a mediterranean, dolomitic soil and vegetation chronosequence. Eur J Soil Sci 48:139–149

    Article  CAS  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 67–84

    Google Scholar 

  • Chintala R, Schumacher TE, Mcdonald LM et al (2014) Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean Soil, Air, Water 42:626–634. doi:10.1002/clen.201300089

    Article  CAS  Google Scholar 

  • Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39:1218–1223. doi:10.2134/jeq2010.0204

    Article  CAS  PubMed  Google Scholar 

  • Clough TJ, Condron L, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293. doi:10.3390/agronomy3020275

    Article  CAS  Google Scholar 

  • Deal C, Brewer CE, Brown RC et al (2012) Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass Bioenergy 37:161–168. doi:10.1016/j.biombioe.2011.12.017

    Article  CAS  Google Scholar 

  • Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248

    CAS  Google Scholar 

  • Deenik JL, McClellan T, Uehara G et al (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270. doi:10.2136/sssaj2009.0115

    Article  CAS  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ (2009) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 251–269

    Google Scholar 

  • Demeyer A, Voundi Nkana JC, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–95

    Article  CAS  PubMed  Google Scholar 

  • Domene X, Mattana S, Hanley K et al (2014) Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol Biochem 72:152–162

    Article  CAS  Google Scholar 

  • Ducey TF, Ippolito JA, Cantrell KB et al (2013) Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Appl Soil Ecol 65:65–72. doi:10.1016/j.apsoil.2013.01.006

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi:10.1111/j.1461-0248.2007.01113.x

    Article  PubMed  Google Scholar 

  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653

    Article  CAS  PubMed  Google Scholar 

  • European Commission (2000) Working document on sludge: 3rd draft (ENV.E.3./LM). Brussels.

  • Farrell M, Macdonald LM, Butler G et al (2013) Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol Fertil Soils 50:169–178. doi:10.1007/s00374-013-0845-z

    Article  Google Scholar 

  • Garcia-Perez M (2008) The formation of polyaromatic hydrocarbons and dioxins during pyrolysis: A review of the literature with descriptions of biomass composition, fast pyrolysis technologies and thermochemical reactions. Washington State University Report WSUEEP08-010

  • Gaskin JW, Speir RA, Harris K et al (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–657. doi:10.2134/agronj2009.0083

    Article  CAS  Google Scholar 

  • Granatstein D, Kruger C, Collins H, et al. (2009) Use of biochar from the pyrolysis of waste organic material as a soil amendment. Washington State Department of Ecology Report 09-07-062

  • Gustafsson Ö, Haghseta F, Chan C et al (1997) Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability. Environ Sci Technol 31:203–209. doi:10.1021/es960317s

    Article  CAS  Google Scholar 

  • Hossain MK, Strezov V, Chan KY, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167–1171. doi:10.1016/j.chemosphere.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  • International Biochar Initiative (2013) Standardized product definition and product testing guidelines for biochar that is used in soil. IBI-STD-01.1

  • Ippolito J, Stromberger ME, Lentz R, Dungan R (2014) Hardwood biochar influences calcareous soil physicochemical and microbiological status. J Environ Qual 43:681–689. doi:10.2134/jeq2013.08.0324

    Article  CAS  Google Scholar 

  • Isnard P, Flammarion P, Roman G et al (2001) Statistical analysis of regulatory ecotoxicity tests. Chemosphere 45:659–669

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Murphy DV, Khalid M et al (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731. doi:10.1016/j.soilbio.2011.04.018

    Article  CAS  Google Scholar 

  • Joseph S, Peacocke J, Lehmann J, Munroe P (2009) Developing a biochar classification and test methods. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 107–126

    Google Scholar 

  • Kookana R, Sarmah A, Van Zwieten L et al (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103–143

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) An introduction. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 1–9

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J et al (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836. doi:10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  • Lentz R, Ippolito J (2012) Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J Environ Qual 41:1033–1043. doi:10.2134/jeq2011.0126

    Article  CAS  PubMed  Google Scholar 

  • Marks EAN, Mattana S, Alcañiz JM, Domene X (2014) Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays. Eur J Soil Biol 60:104–111. doi:10.1016/j.ejsobi.2013.12.002

    Article  CAS  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • OECD (2006) Guideline 208. Terrestrial plant test: seedling emergence and seedling growth test. Organisation for Economic Co-Operation and Development (OECD), Paris, France

  • Oguntunde PG, Abiodun BJ, Ajayi AE, van de Giesen N (2008) Effects of charcoal production on soil physical properties in Ghana. J Plant Nutr Soil Sci 171:591–596. doi:10.1002/jpln.200625185

    Article  CAS  Google Scholar 

  • Paton GI, Killham K, Weitz HJ, Semple KT (2005) Biological tools for the assessment of contaminated land: applied soil ecotoxicology. Soil Use Manage 21:487–499. doi:10.1079/SUM2005350

    Article  Google Scholar 

  • Poot A, Quik JTK, Veld H, Koelmans AA (2009) Quantification methods of black carbon: comparison of rock-eval analysis with traditional methods. J Chromatogr A 1216:613–22. doi:10.1016/j.chroma.2008.08.011

    Article  CAS  PubMed  Google Scholar 

  • Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12

  • Rousk J, Dempster DN, Jones DL (2013) Transient biochar effects on decomposer microbial growth rates: evidence from two agricultural case-studies. Eur J Soil Sci 64:770–776. doi:10.1111/ejss.12103

    Article  CAS  Google Scholar 

  • Rovira P, Ramón Vallejo V (2007) Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39:202–215. doi:10.1016/j.soilbio.2006.07.021

    Article  CAS  Google Scholar 

  • Santisteban JI, Mediavilla R, López-Pamo E et al (2004) Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments. J Paleolimnol 32:287–299

    Article  Google Scholar 

  • Schimmelpfennig S, Glaser B (2012) One step forward toward characterization: some important material properties to distinguish biochars. J Environ Qual 41:1001–1013. doi:10.2134/jeq2011.0146

    Article  CAS  PubMed  Google Scholar 

  • Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44:9318–9323. doi:10.1021/es101283d

    Article  CAS  PubMed  Google Scholar 

  • Sohi S, Lopez-capel E, Krull E, Bol R (2009) Biochar, climate change and soil: a review to guide future research. CSIRO Land and Water Science Report 05/09

  • Soil Survey Staff (2010) Keys to Soil Taxonomy 11th Ed. USDA-NRCS

  • Song Y, Hahn HH, Hoffmann E (2002) The effect of carbonate on the precipitation of calcium phosphate. Environ Technol 23:207–215

    Article  CAS  PubMed  Google Scholar 

  • Tan KH (1993) Principles of Soil Chemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011a) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441. doi:10.1016/j.jhazmat.2011.03.063

    Article  CAS  PubMed  Google Scholar 

  • Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011b) Chemosphere influence of soil properties on heavy metal sequestration by biochar amendment: 1 Copper sorption isotherms and the release of cations. Chemosphere 82:1431–1437. doi:10.1016/j.chemosphere.2010.11.050

    Article  CAS  PubMed  Google Scholar 

  • Van Krevelen DW (1961) Coal: typology, chemistry, physics, constitution. Elsevier, Amsterdam

    Google Scholar 

  • Van Zwieten L, Sing B, Joseph S et al (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for Environmental Management. Earthscan, London, pp 227–249

    Google Scholar 

  • Ventura M, Sorrenti G, Panzacchi P et al (2013) Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. J Environ Qual 42:76. doi:10.2134/jeq2012.0250

    Article  CAS  PubMed  Google Scholar 

  • Verheijen F, Jeffery S, Bastos AC, et al. (2010) Biochar application to soils - a critical scientific review of effects on soil properties, processes, and functions. 149. doi: 10.2788/472

  • Villar MC, González-Prieto SJ, Carballas T (1998) Evaluation of three organic wastes for reclaiming burnt soils: improvement in the recovery of vegetation cover and soil fertility in pot experiments. Biol Fertil Soils 26:122–129

    Article  Google Scholar 

  • Yao FX, Arbestain MC, Virgel S et al (2010) Simulated geochemical weathering of a mineral ash-rich biochar in a modified soxhlet reactor. Chemosphere 80:724–732. doi:10.1016/j.chemosphere.2010.05.026

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Xu R, Zhang H (2011a) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. doi:10.1016/j.biortech.2010.11.018

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Xu R, Wang N, Li J (2011b) Amendment of acid soils with crop residues and biochars. Pedosphere 21:302–308

    Article  Google Scholar 

  • Zhang A, Liu Y, Pan G et al (2012) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China plain. Plant Soil 351:263–275. doi:10.1007/s11104-011-0957-x

    Article  CAS  Google Scholar 

  • Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179. doi:10.1016/j.soilbio.2011.02.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan A. N. Marks.

Additional information

Responsible Editor: Simon Jeffery..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marks, E.A.N., Alcañiz, J.M. & Domene, X. Unintended effects of biochars on short-term plant growth in a calcareous soil. Plant Soil 385, 87–105 (2014). https://doi.org/10.1007/s11104-014-2198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2198-2

Keywords

Navigation