Skip to main content
Log in

Lead phytoavailability change driven by its speciation transformation after the addition of tea polyphenols (TPs): Combined selective sequential extraction (SSE) and XANES analysis

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Metal species in rhizosphere soil profoundly influence their mobility and phytoavailability. Clarifying the speciation transformation of heavy metals helps understand their translocation and accumulation in plants.

Methods

Single extraction, selective sequential extraction (SSE) and X-ray absorption near-edge structure (XANES) spectroscopy were employed to investigate the speciation transformation of lead (Pb) and its influence on metal accumulation in tea plants after the addition of tea polyphenols (TPs).

Results

Pb content was decreased in young leaves and stems, whereas increased in roots, after TPs were amended to soil. Both SSE and XANES analysis suggested bioavailable Pb was transformed to organically bound Pb after the addition of TPs. The increased percentage of organically bound Pb might be fixed in the cell wall of plant root through a ternary complex formed between the Pb-organic matter complex and cell wall components. Therefore, Pb translocation from roots to young tissues was decreased.

Conclusions

Pb phytoavailability change was driven by its speciation transformation after the addition of TPs. Combined SSE and XANES spectroscopy represent powerful tools to study metal speciation transformation in plant and soil systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SSE:

Selective sequential extraction

XANES:

X-ray absorption near-edge structure

TPs:

Tea polyphenols

SOM:

Soil organic matter

DTPA:

Diethylene triamine pentaacetic acid

EDTA:

Ethylene diamine tetraacetic acid

References

  • Andre J, Charnock J, Stürzenbaum SR, Kille P, Morgan AJ, Hodson ME (2009) Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses. Environ Sci Technol 43:6822–6829

    Article  CAS  PubMed  Google Scholar 

  • Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133:25–46

    Article  CAS  PubMed  Google Scholar 

  • Beak DG, Wilkin RT, Ford RG, Kelly SD (2008) Examination of arsenic speciation in sulfidic solutions using X-ray absorption spectroscopy. Environ Sci Technol 42:1643–1650

    Article  CAS  PubMed  Google Scholar 

  • Bose S, Bhattacharyya AK (2008) Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 70:1264–1272

    Article  CAS  PubMed  Google Scholar 

  • Bovenkamp GL, Prange A, Schumacher W, Ham K, Smith AP, Hormes J (2013) Lead uptake in diverse plant families: a study applying X-ray absorption near edge spectroscopy. Environ Sci Technol 47:4375–4382

    Article  CAS  PubMed  Google Scholar 

  • Claudio ES, Goldwin H, Magyar JS (2003) Fundamental coordination chemistry, environmental chemistry, and biochemistry of lead (II). Progress in inorganic chemistry, vol 51. Wiley and Sons, Inc, Hoboken

    Google Scholar 

  • Dangles O (2012) Antioxidant activity of plant phenols: chemical mechanisms and biological significance. Curr Org Chem 16:692–714

    Article  CAS  Google Scholar 

  • Duan DC, Wang M, Yu MG, Long DY, Ullah N, Liu TT, Shi JY, Chen YX (2014) Does the compositional change of soil organic matter in the rhizosphere and bulk soil of tea plants induced by tea polyphenols correlate with Pb bioavailability? J Soils Sediments 14:394–406

    Article  CAS  Google Scholar 

  • Duineveld BM, Rosado AS, van Elsas JD, van Veen JA (1998) Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol 64:4950–4957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng MH, Shan XQ, Zhang SZ, Wen B (2005) A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ Pollut 137:231–240

    Article  CAS  PubMed  Google Scholar 

  • Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73:627–650

    CAS  Google Scholar 

  • Han WY, Zhao FJ, Shi YZ, Ma LF, Ruan JY (2006) Scale and causes of lead contamination in Chinese tea. Environ Pollut 139:125–132

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Matsufuru H, Takaoka M, Tanida H, Sato T (2009) Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an X-ray absorption fine structure investigation. J Environ Qual 38:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  PubMed  Google Scholar 

  • Heard MJ, Chamberlain AC, Sherlock JC (1983) Uptake of lead by humans and effect of minerals and food. Sci Total Environ 30:245–253

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Chen Y, Ni D (2012) Effect of superfine grinding on quality and antioxidant property of fine green tea powders. LWT Food Sci Technol 45:8–12

    Article  CAS  Google Scholar 

  • Jin CW, He YF, Zhang K, Zhou GD, Shi JL, Zheng SJ (2005) Lead contamination in tea leaves and non-edaphic factors affecting it. Chemosphere 61:726–732

    Article  CAS  PubMed  Google Scholar 

  • Koningsberger DC, Prins R (1987) X-ray absorption: principles, applications, techniques of EXAFS. SEXAFS and XANES, Wiley-Interscience, New York

    Google Scholar 

  • Kopittke PM, Asher CJ, Blamey FPC, Auchterlonie GJ, Guo YN, Menzies NW (2008) Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana). Environ Sci Technol 42:4595–4599

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurti GSR, Naidu R (2002) Solid − solution speciation and phytoavailability of copper and zinc in soils. Environ Sci Technol 36:2645–2651

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurti GSR, Huang PM, Van Rees KCJ, Kozak LM, Rostad HPW (1995) Speciation of particulate-bound cadmium of soils and its bioavailability. Analyst 120:659–665

    Article  CAS  Google Scholar 

  • Lamelas C, Pinheiro JP, Slaveykova VI (2009) Effect of humic acid on Cd(II), Cu(II), and Pb(II) uptake by freshwater algae: kinetic and cell wall speciation considerations. Environ Sci Technol 43:730–735

    Article  CAS  PubMed  Google Scholar 

  • Lavid N, Schwartz A, Lewinsohn E, Tel-Or E (2001a) Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae). Planta 214:189–195

    Article  CAS  PubMed  Google Scholar 

  • Lavid N, Schwartz A, Yarden O, Tel-Or E (2001b) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212:323–331

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • MacLean LCW, Beauchemin S, Rasmussen PE (2011) Lead speciation in house dust from Canadian urban homes using EXAFS, micro-XRF, and micro-XRD. Environ Sci Technol 45:5491–5497

    Article  CAS  PubMed  Google Scholar 

  • Manceau A, Boisset M-C, Sarret G, Hazemann J-L, Mench M, Cambier P, Prost R (1996) Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ Sci Technol 30(5):1540–1552. doi:10.1021/es9505154

    Article  CAS  Google Scholar 

  • Marmiroli M, Antonioli G, Maestri E, Marmiroli N (2005) Evidence of the involvement of plant ligno-cellulosic structure in the sequestration of Pb: an X-ray spectroscopy-based analysis. Environ Pollut 134:217–227

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar H, Ahmad N (2000) Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 71(6):1698S–1702S

    CAS  PubMed  Google Scholar 

  • Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222

    Article  CAS  PubMed  Google Scholar 

  • NourEddine D, Miloud S, Abdelkader A (2005) Effect of lead exposure on dopaminergic transmission in the rat brain. Toxicology 207:363–368

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  CAS  PubMed  Google Scholar 

  • Quevauviller P, Rauret G, Griepink B (1993) Single and sequential extraction in sediments and soils. Int J Environ Anal Chem 51:231–235

    Article  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  CAS  PubMed  Google Scholar 

  • Ruby MV, Davis A, Nicholson A (1994) In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol 28:646–654

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Marin P, Slaveykova VI, Beiras R (2010) Cu and Pb accumulation by the marine diatom Thalassiosira weissflogii in the presence of humic acids. Environ Chem 7:309–317

    Article  CAS  Google Scholar 

  • Schroth AW, Bostick BC, Kaste JM, Friedland AJ (2008) Lead sequestration and species redistribution during soil organic matter decomposition. Environ Sci Technol 42:3627–3633

    Article  CAS  PubMed  Google Scholar 

  • Serafini M, Ghiselli A, Ferro-Luzzi A (1996) In vivo antioxidant effect of green and black tea in man. Eur J Clin Nutr 50:28–32

    CAS  PubMed  Google Scholar 

  • Strawn DG, Sparks DL (2000) Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil. Soil Sci Soc Am J 64:144–156

    Article  CAS  Google Scholar 

  • Suominen K, Kitunen V, Smolander A (2003) Characteristics of dissolved organic matter and phenolic compounds in forest soils under silver birch (Betula pendula), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Eur J Soil Sci 54:287–293

    Article  CAS  Google Scholar 

  • Temminghoff EJM, Van der Zee SEATM, de Haan FAM (1997) Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ Sci Technol 31:1109–1115

    Article  CAS  Google Scholar 

  • Temminghoff EJM, Van Der Zee SEATM, De Haan FAM (1998) Effects of dissolved organic matter on the mobility of copper in a contaminated sandy soil. Eur J Soil Sci 49:617–628

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PG, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Thomas VM, Socolow RH, Fanelli JJ, Spiro TG (1999) Effects of reducing lead in gasoline: an analysis of the international experience. Environ Sci Technol 33:3942–3948

    Article  CAS  Google Scholar 

  • Tian S, Lu L, Yang X, Webb SM, Du Y, Brown PH (2010) Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation. Environ Sci Technol 44:5920–5926

    Article  CAS  PubMed  Google Scholar 

  • Utomo HD, Hunter KA (2006) Adsorption of divalent copper, zinc, cadmium and lead ions from aqueous solution by waste tea and coffee adsorbents. Environ Technol 27:25–32

    Article  CAS  Google Scholar 

  • Wang XP, Shan XQ, Zhang SZ, Wen B (2004) A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere 55:811–822

    Article  CAS  PubMed  Google Scholar 

  • Wear JI, Evans CE (1968) Relationship of zinc uptake by corn and sorghum to soil zinc measured by three extractants. Soil Sci Soc Am J 32:543–546

    Article  CAS  Google Scholar 

  • WHO (2003) Lead in drinking-water, background document for preparation of WHO Guidelines for drinking-water quality. Geneva

  • Yang JJ, Hu SP, Chen XC, Yu MG, Liu J, Li H, Shen CF, Shi JY, Chen YX (2010) Transformation of lead solid fraction in the rhizosphere of Elsholtzia Splendens: the importance of organic matter. Water Air Soil Pollut 205:333–342

    Article  CAS  Google Scholar 

  • Zhang P, Ryan JA, Bryndzia LT (1997) Pyromorphite formation from goethite adsorbed lead. Environ Sci Technol 31:2673–2678

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 41201319) and Program for New Century Excellent Talents in University (NCET-11-0455). We would like to express our gratitude to Lirong Zheng and Jing Zhang at the XAFS beamline station of Beijing Synchrotron Radiation Facility (BSRF) for their generous help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyan Shi.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, D., Peng, C., Xu, C. et al. Lead phytoavailability change driven by its speciation transformation after the addition of tea polyphenols (TPs): Combined selective sequential extraction (SSE) and XANES analysis. Plant Soil 382, 103–115 (2014). https://doi.org/10.1007/s11104-014-2152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2152-3

Keywords

Navigation