Skip to main content
Log in

Nutrient interactions and arbuscular mycorrhizas: a meta-analysis of a mycorrhiza-defective mutant and wild-type tomato genotype pair

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Arbuscular mycorrhizas (AM) enhance plant uptake of a range of mineral nutrients from the soil. Interactions between nutrients in the soil and plant, are complex, and can be affected by AM. Using a mycorrhiza-defective mutant tomato genotype (rmc) and its wild-type (76R), provides a novel method to study AM functioning.

Methods

We present a meta-analysis comparing tissue nutrient concentration (P, Zn, K, Ca, Cu, Mg, Mn, S, B, Na, Fe), biomass and mycorrhizal colonisation data between the 76R and rmc genotypes, across a number of studies that have used this pair of tomato genotypes. Particular attention is paid to interactions between soil P or soil Zn, with tissue nutrients.

Results

For most nutrients, the difference in concentration between genotypes was significantly affected either by soil P, soil Zn, or both. When soil P was deficient, AM were particularly beneficial in terms of uptake of not only P, but other nutrients as well.

Conclusions

Colonisation by AMF significantly affects the uptake of many soil macro- and micro-nutrients. Furthermore, the soil P and Zn status also influences the difference in nutrient concentrations between mycorrhizal and non-mycorrhizal plants. The interactions identified by this meta-analysis provide a basis for future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel Latef AAH, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae 127(3):228–233. doi:10.1016/j.scienta.2010.09.020

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae 109(1):1–7. doi:10.1016/j.scienta.2006.02.019

    Article  Google Scholar 

  • Al-Karaki GN, Hammad R (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. J Plant Nutr 24(8):1311–1323. doi:10.1081/PLN-100106983

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11(1):43–47

    Article  CAS  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International Zinc Association and International Fertilizer Industry Association, Brussels, Belgium and Paris, France

  • Arines J, VilariÑO A, Sainz M (1989) Effect of different inocula of vesicular-arbuscular mycorrhizal fungi on manganese content and concentration in red clover (Trifolium pratense L.) plants. New Phytologist 112(2):215–219. doi:10.1111/j.1469-8137.1989.tb02376.x

    Article  Google Scholar 

  • Asghari HR, Cavagnaro TR (2011) Arbuscular mycorrhizas enhance plant interception of leached nutrients. Functional Plant Biology 38(3):219–226. doi:10.1071/fp10180

    Article  Google Scholar 

  • Asghari HR, Cavagnaro TR (2012) Arbuscular Mycorrhizas Reduce Nitrogen Loss via Leaching. Plos One 7(1):151–155. doi:10.1371/journal.pone.0029825

    Article  Google Scholar 

  • Barker SJ, Stummer B, Gao L, Dispain I, O'Connor PJ, Smith SE (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. Plant Journal 15(6):791–797. doi:10.1046/j.1365-313×.1998.00252.×

    Article  CAS  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil 134(2):189–207. doi:10.1007/bf00012037

    Article  CAS  Google Scholar 

  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Chapter 7 - Function of Nutrients: Micronutrients. In: Marschner P (ed) Marschner's Mineral Nutrition of Higher Plants, 3rd edn. Academic, San Diego, pp 191–248

    Chapter  Google Scholar 

  • Bryla DR, Koide RT (1998) Mycorrhizal response of two tomato genotypes relates to their ability to acquire and utilize phosphorus. Annals of Botany 82(6):849–857

    Article  Google Scholar 

  • Burkert B, Robson A (1994) Zn-65 uptake in subterranean clover (Trifolium-subterraneum l) by 3 vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem 26(9):1117–1124. doi:10.1016/0038-0717(94)90133-3

    Article  Google Scholar 

  • Burns AE, Gleadow RM, Zacarias AM, Cuambe CE, Miller RE, Cavagnaro TR (2012) Variations in the Chemical Composition of Cassava (Manihot esculenta Crantz) Leaves and Roots As Affected by Genotypic and Environmental Variation. Journal of Agricultural and Food Chemistry 60(19):4946–4956. doi:10.1021/jf2047288

    Article  PubMed  CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agriculture, ecosystems & environment 116(1):72–84

    Article  Google Scholar 

  • Cavagnaro TR, Martin AW (2011) Arbuscular mycorrhizas in southeastern Australian processing tomato farm soils. Plant and Soil 340(1–2):327–336. doi:10.1007/s11104-010-0603-z

  • Cavagnaro TR, Gao LL, Smith FA, Smith SE (2001) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151(2):469–475. doi:10.1046/j.0028-646x.2001.00191.x

  • Cavagnaro TR, Smith FA, Hay G, Carne-Cavagnaro VL, Smith SE (2004) Inoculum type does not affect overall resistance of an arbuscular mycorrhiza-defective tomato mutant to colonisation but inoculation does change competitive interactions with wild-type tomato. New Phytol 161(2):485–494. doi:10.1046/j.1469-8137.2004.00967.x

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant and Soil 282(1–2):209–225. doi:10.1007/s11104-005-5847-7

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Sokolow SK, Jackson LE (2007) Mycorrhizal effects on growth and nutrition of tomato under elevated atmospheric carbon dioxide. Funct Plant Biol 34(8):730–736. doi:10.1071/fp06340

  • Cavagnaro TR, Langley AJ, Jackson LE, Smukler SM, Koch GW (2008) Growth, nutrition, and soil respiration of a mycorrhiza-defective tomato mutant and its mycorrhizal wild-type progenitor. Funct Plant Biol 35(3):228–235. doi:10.1071/fp07281

  • Cavagnaro TR, Dickson S, Smith FA (2010) Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant and Soil 329(1–2):307–313. doi:10.1007/s11104-009-0158-z

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Barrios-Masias FH, Jackson LE (2012) Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant and Soil 353(1–2):181–194. doi:10.1007/s11104-011-1021-6

    Article  CAS  Google Scholar 

  • Cayton MTC, Reyes ED, Neue HU (1985) Effect of zinc fertilization on the mineral nutrition of rices differing in tolerance to zinc deficiency. Plant and Soil 87(3):319–327. doi:10.1007/bf02181899

    Article  CAS  Google Scholar 

  • Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50(6):839–846. doi:10.1016/s0045-6535(02)00228-x

    Article  PubMed  CAS  Google Scholar 

  • Chen BD, Shen H, Li XL, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil 261(1–2):219–229. doi:10.1023/B:PLSO.0000035538.09222.ff

    Article  CAS  Google Scholar 

  • Christie P, Li XL, Chen BD (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil 261(1–2):209–217. doi:10.1023/B:PLSO.0000035542.79345.1b

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23(7):867–902. doi:10.1080/01904160009382068

    Article  CAS  Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. 2. Uptake and translocation of phosphorus, zinc and sulfur. New Phytologist 81(1):43. doi:10.1111/j.1469-8137.1978.tb01602.x

    Article  CAS  Google Scholar 

  • Diaz G, AzconAguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant and Soil 180(2):241–249. doi:10.1007/bf00015307

    Article  CAS  Google Scholar 

  • Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634. doi:10.1136/bmj.315.7109.629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, MA

    Google Scholar 

  • Fageria V (2001) Nutrient interactions in crop plants. J Plant Nutr 24(8):1269–1290

    Article  CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The Physiology of Metal Toxicity in Plants. Annual Review of Plant Physiology 29(1):511–566. doi:10.1146/annurev.pp.29.060178.002455

    Article  CAS  Google Scholar 

  • Gao LL, Delp G, Smith SE (2001) Colonization patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. New Phytologist 151(2):477–491. doi:10.1046/j.0028-646x.2001.00193.x

    Article  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519–530. doi:10.1007/s00572-010-0333-3

    Article  PubMed  Google Scholar 

  • Gildon A, Tinker PB (1983a) Interactions of vesicular arbuscular mycorrhizal infection and heavy metals in plants. 1. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytologist 95(2):247–261. doi:10.1111/j.1469-8137.1983.tb03491.x

    Article  CAS  Google Scholar 

  • Gildon A, Tinker PB (1983b) Interactions of vesicular arbuscular mycorrhizal infections and heavy-metals in plants. 2. The effects of infection on uptake of copper. New Phytologist 95(2):263–268. doi:10.1111/j.1469-8137.1983.tb03492.x

    Article  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14(5):307–312. doi:10.1007/s00572-003-0274-1

    Article  PubMed  Google Scholar 

  • Graham RD, Welch RM, Grunes DL, Cary EE, Norvell WA (1987) Effect of Zinc Deficiency on the Accumulation of Boron and Other Mineral Nutrients in Barley. Soil Sci Soc Am J 51(3):652–657. doi:10.2136/sssaj1987.03615995005100030018x

    Article  CAS  Google Scholar 

  • Grewal HS, Graham RD, Stangoulis J (1998) Zinc-boron interaction effects in oilseed rape. J Plant Nutr 21(10):2231–2243

    Article  CAS  Google Scholar 

  • Hallett PD, Feeney DS, Bengough AG, Rillig MC, Scrimgeour CM, Young IM (2009) Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant and Soil 314(1–2):183–196. doi:10.1007/s11104-008-9717-y

  • Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 21(11):1539–1558. doi:10.1002/sim.1186

    Article  PubMed  Google Scholar 

  • Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ: British Medical Journal 327(7414):557

    Article  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1):139–146

    Article  PubMed  CAS  Google Scholar 

  • Hosseini SM, Maftoun M, Karimian N, Ronaghi A, Emam Y (2007) Effect of Zinc x Boron Interaction on Plant Growth and Tissue Nutrient Concentration of Corn. J Plant Nutr 30(5):773–781. doi:10.1080/01904160701289974

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23(5–6):481–488. doi:10.1051/agro:2003013

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium-subterraneum l. 3. Hyphal transport of P-32 and N-15. New Phytologist 124(1):61–68. doi:10.1111/j.1469-8137.1993.tb03797.x

    Article  CAS  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4(2):45–57. doi:10.1007/BF00204058

    Article  Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1991a) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant and Soil 131(2):177–185. doi:10.1007/bf00009447

    Article  CAS  Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1991b) Effect of a Vesicular-Arbuscular Mycorrhizal Fungus and Rhizosphere Micro- Organisms on Manganese Reduction in the Rhizosphere and Manganese Concentrations in Maize (Zea mays L.). New Phytologist 117(4):649–655. doi:10.1111/j.1469-8137.1991.tb00969.x

    Article  CAS  Google Scholar 

  • Lambert D, Weidensaul T (1991) Element uptake by mycorrhizal soybean from sewage-sludge-treated soil. Soil Sci Soc Am J 55(2):393–398

    Article  CAS  Google Scholar 

  • Lambert DH, Baker DE, Cole H (1979) Role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements. Soil Sci Soc Am J 43(5):976–980

    Article  CAS  Google Scholar 

  • Lee YJ, George E (2005) Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant and Soil 278(1–2):361–370. doi:10.1007/s11104-005-0373-1

    Article  CAS  Google Scholar 

  • Li XL, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil 136(1):49–57. doi:10.1007/bf02465219

    Article  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9(6):331–336. doi:10.1007/s005720050277

    Article  CAS  Google Scholar 

  • Loneragan JF, Webb MJ (1993) Interactions Between Zinc and Other Nutrients Affecting the Growth of Plants, vol 55. Zinc in Soils and Plants. Kluwer Academic Publ, Dordrecht

  • Loneragan JF, Grove TS, Robson AD, Snowball K (1979) Phosphorus Toxicity as a Factor in Zinc-Phosphorus Interactions in Plants. Soil Sci Soc Am J 43(5):966–972

    Article  CAS  Google Scholar 

  • Manjarrez M, Smith FA, Marschner P, Smith SE (2008) Is cortical root colonization required for carbon transfer to arbuscular mycorrhizal fungi? Evidence from colonization phenotypes and spore production in the reduced mycorrhizal colonization (rmc) mutant of tomato. Botany 86(9):1009–1019. doi:10.1139/b08-043

    Article  Google Scholar 

  • Manjarrez M, Wallwork M, Smith SE, Smith FA, Dickson S (2009) Different arbuscular mycorrhizal fungi induce differences in cellular responses and fungal activity in a mycorrhiza-defective mutant of tomato (rmc). Funct Plant Biol 36(1):86–96. doi:10.1071/fp08032

  • Manjarrez M, Christophersen HM, Smith SE, Smith FA (2010) Cortical colonisation is not an absolute requirement for phosphorus transfer to plants in arbuscular mycorrhizas formed by Scutellospora calospora in a tomato mutant: evidence from physiology and gene expression. Funct Plant Biol 37(12):1132–1142

  • Marschner P (2012) Chapter 15 - Rhizosphere Biology. In: Marschner P (ed) Marschner's Mineral Nutrition of Higher Plants, 3rd edn. Academic, San Diego, pp 369–388

    Chapter  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159(1):89–102

    CAS  Google Scholar 

  • Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28(1):23–36. doi:10.1016/j.apsoil.2004.06.007

  • Meier S, Azcon R, Cartes P, Borie F, Cornejo P (2011) Alleviation of Cu toxicity in Oenothera picensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue. Applied Soil Ecology 48(2):117–124

    Article  Google Scholar 

  • Merrild MP, Ambus P, Rosendahl S, Jakobsen I (2013) Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytologist 200(1):229–240. doi:10.1111/nph.12351

    Article  PubMed  CAS  Google Scholar 

  • Miller RE, Gleadow RM, Cavagnaro TR (2014) Age versus stage: does ontogeny modify the effect of phosphorus and arbuscular mycorrhizas on above- and below-ground defence in forage sorghum? Plant. Cell & Environment 37(4):929–942. doi:10.1111/pce.12209

    Article  CAS  Google Scholar 

  • Nakagawa S, Santos EA (2012) Methodological issues and advances in biological meta-analysis. Evol Ecol 26(5):1253–1274. doi:10.1007/s10682-012-9555-5

    Article  Google Scholar 

  • Ortas I, Ortakci D, Kaya Z, Cinar A, Onelge N (2002) Mycorrhizal dependency of sour orange in relation to phosphorus and zinc nutrition. J Plant Nutr 25(6):1263–1279. doi:10.1081/pln-120004387

    Article  CAS  Google Scholar 

  • Peverill KI, Sparrow LA, Reuter DJ (1999) Soil Analysis: An Interpretation Manual. CSIRO Publishing

  • Plenchette C, Fortin J, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant and Soil 70(2):199–209

    Article  CAS  Google Scholar 

  • Poulsen KH, Nagy R, Gao LL, Smith SE, Bucher M, Smith FA, Jakobsen I (2005) Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytologist 168(2):445–453. doi:10.1111/j.1469-8137.2005.01523.x

    Article  PubMed  CAS  Google Scholar 

  • Reuter DJ, Robinson JB (1997) Plant analysis: an interpretation manual, 2nd edn. CSIRO Publishing, Melbourne

    Google Scholar 

  • Rhodes LH, Gerdemann JW (1975) Phosphate Uptake Zones of Mycorrhizal and Non-Mycorrhizal Onions. New Phytologist 75(3):555–561. doi:10.2307/2431598

    Article  Google Scholar 

  • Rhodes LH, Gerdemann JW (1978a) Hyphal translocation and uptake of sulfur by vesicular-arbuscular mycorrhizae of onion. Soil Biol Biochem 10(5):355–360. doi:10.1016/0038-0717(78)90057-3

    Article  CAS  Google Scholar 

  • Rhodes LH, Gerdemann JW (1978b) Translocation of calcium and phosphate by external hyphae of vesicular-arbuscular mycorrhizae. Soil Science 126(2):125–126. doi:10.1097/00010694-197808000-00009

    Article  CAS  Google Scholar 

  • Rillig MC, Ramsey PW, Gannon JE, Mummey DL, Gadkar V, Kapulnik Y (2008) Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant and Soil 308(1–2):267–275. doi:10.1007/s11104-008-9629-x

    Article  CAS  Google Scholar 

  • Robson AD, Pitman MG (1983) Interactions between nutrients in higher plants. Encyclopedia Plant Physiology New Series, vol 15A. Springer, Berlin

    Google Scholar 

  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR (2014) Chapter Two - A Meta-Analysis and Review of Plant-Growth Response to Humic Substances: Practical Implications for Agriculture. In: Donald LS (ed) Advances in Agronomy, vol Volume 124. Academic Press, pp 37-89

  • Ruzicka DR, Hausmann NT, Barrios-Masias FH, Jackson LE, Schachtman DP (2012) Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions. Plant and Soil 350(1–2):145–162. doi:10.1007/s11104-011-0890-z

  • Shen H, Christie P, Li X (2006) Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health 28(1–2):111–119. doi:10.1007/s10653-005-9020-2

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133(1):16–20. doi:10.1104/pp. 103.024380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sonmez O, Aydemir S, Kaya C (2009) Mitigation effects of mycorrhiza on boron toxicity in wheat (Triticum durum) plants. New Zealand Journal of Crop and Horticultural Science 37(2):99–104

    Article  CAS  Google Scholar 

  • Subramanian K, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia horticulturae 107(3):245–253

    Article  Google Scholar 

  • Schwarz D, Welter S, George E, Franken P, Lehmann K, Weckwerth W, Doelle S, Worm M (2011) Impact of arbuscular mycorrhizal fungi on the allergenic potential of tomato. Mycorrhiza 21(5):341–349. doi:10.1007/s00572-010-0345-z

  • Tang J-L, Liu JLY (2000) Misleading funnel plot for detection of bias in meta-analysis. Journal of Clinical Epidemiology 53(5):477–484

    Article  PubMed  CAS  Google Scholar 

  • Thompson SG, Higgins JPT (2002) How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine 21(11):1559–1573. doi:10.1002/sim.1187

    Article  PubMed  Google Scholar 

  • Veresoglou SD, Chen B, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry 46:53–62

    Article  CAS  Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36(3):1–48

    Google Scholar 

  • Warnock RE (1970) Micronutrient Uptake and Mobility Within Corn Plants (Zea mays L.) in Relation to Phosphorus-induced Zinc Deficiency1. Soil Sci Soc Am J 34(5):765–769. doi:10.2136/sssaj1970.03615995003400050028×

    Article  CAS  Google Scholar 

  • Watts-Williams S, Cavagnaro T (2012) Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biology and Fertility of Soils 48(3):285–294. doi:10.1007/s00374-011-0621-×

    Article  CAS  Google Scholar 

  • Watts-Williams S, Patti A, Cavagnaro T (2013) Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant and Soil 371(1–2):299–312. doi:10.1007/s11104-013-1670-8

    Article  CAS  Google Scholar 

  • Watts-Williams S, Turney T, Patti A, Cavagnaro T (2014) Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas. Plant and Soil 1–11. doi:10.1007/s11104-013-1967-7

  • Zhu YG, Christie P, Laidlaw AS (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42(2):193–199. doi:10.1016/s0045-6535(00)00125-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank members of Cavlab, particularly Dr. Michael Rose for advice on the meta-analysis. We also gratefully acknowledge Prof. Sally Smith and A/Prof. Susan Barker for continued access to the rmc and 76R genotypes of tomato. We also thank Prof. Sally Smith for valuable discussions, and two anonymous reviewers for their helpful comments on an earlier version of this manuscript. TRC also wishes to acknowledge the Australian Research Council for financial support (FT120100463).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephanie J. Watts-Williams or Timothy R. Cavagnaro.

Additional information

Responsible Editor: Euan K. James..

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watts-Williams, S.J., Cavagnaro, T.R. Nutrient interactions and arbuscular mycorrhizas: a meta-analysis of a mycorrhiza-defective mutant and wild-type tomato genotype pair. Plant Soil 384, 79–92 (2014). https://doi.org/10.1007/s11104-014-2140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2140-7

Keywords

Navigation