Skip to main content

Advertisement

Log in

Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

This paper summarizes the importance of climate on tropical wetlands. Regional hydrology and carbon dynamics in many of these wetlands could shift with dramatic changes in these major carbon storages if the inter-tropical convergence zone (ITCZ) were to change in its annual patterns. The importance of seasonal pulsing hydrology on many tropical wetlands, which can be caused by watershed activities, orographic features, or monsoonal pulses from the ITCZ, is illustrated by both annual and 30-year patterns of hydrology in the Okavango Delta in southern Africa. Current studies on carbon biogeochemistry in Central America are attempting to determine the rates of carbon sequestration in tropical wetlands compared to temperate wetlands and the effects of hydrologic conditions on methane generation in these wetlands. Using the same field and lab techniques, we estimated that a humid tropical wetland in Costa Rica accumulated 255 g C m−2 year−1 in the past 42 years, 80% more than a similar temperate wetland in Ohio that accumulated 142 g C m−2 year−1 over the same period. Methane emissions averaged 1,080 mg-C m−2 day−1 in a seasonally pulsed wetland in western Costa Rica, a rate higher than methane emission rates measured over the same period from humid tropic wetlands in eastern Costa Rica (120–278 mg-C m−2 day−1). Tropical wetlands are often tuned to seasonal pulses of water caused by the seasonal movement of the ITCZ and are the most likely to be have higher fire frequency and changed methane emissions and carbon oxidation if the ITCZ were to change even slightly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Altor AE, Mitsch WJ (2006) Methane flux from created wetlands: relationship to intermittent versus continuous inundation and emergent macrophytes. Ecol Eng 28:224–234. doi:10.1016/j.ecoleng.2006.06.006

    Article  Google Scholar 

  • Altor AE, Mitsch WJ (2008) Pulsing hydrology, methane emissions, and carbon dioxide fluxes in created marshes: a 2-year ecosystem study. Wetlands 28:423–438. doi:10.1672/07-98.1

    Article  Google Scholar 

  • Anderson CJ, Mitsch WJ (2006) Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes. Wetlands 26:779–792. doi:10.1672/0277-5212(2006)26[779:SCANAA]2.0.CO;2

    Article  Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358. doi:10.1007/BF00052709

    Article  CAS  Google Scholar 

  • Bergamaschi P, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T, Platt U, Kaplan JO, Körner S, Heimann M, Dlugokencky EJ, Goede A (2007) Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J Geophys Res 112:D02304. doi: 10.1029/2006JD007268

  • Bernal B, Mitsch WJ (2008a) Comparing carbon sequestration rates in tropical and temperate wetlands using radiometric dating. Abstracts, Soil Science Society of America/Geological Society of America Annual Meeting, Houston TX

  • Bernal B, Mitsch WJ (2008b) A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol Eng 34:311–323. doi:10.1016/j.ecoleng.2008.09.005

    Article  Google Scholar 

  • Cassidy L (2003) Anthropogenic burning in the Okavango Panhandle of Botswana: livelihoods and spatial dimensions. MS thesis, The Graduate School, University of Florida, Gainesville

  • Delaune RD, Pezeshki S (2003) The role of soil organic carbon in maintaining surface elevation in rapidly subsiding U.S. Gulf of Mexico coastal marshes. Water Air Soil Pollut 3:167–179

    CAS  Google Scholar 

  • Euliss NH, Gleason RA, Olness A, McDougal RL, Murkin HR, Robarts RD, Bourbonniere RA, Warner BG (2006) North American prairie wetlands are important nonforested land-based carbon storage sites. Sci Total Environ 361:179–188. doi:10.1016/j.scitotenv.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  • Finlayson M, Davidson NC (1999) Global review of wetland resources and priorities for wetland inventory. Ramsar Bureau Contract 56. Ramsar Convention Bureau, Gland

    Google Scholar 

  • Frankenberg C, Meirink JF, van Weele M, Platt U, Wagner T (2005) Assessing methane emissions from global space-borne observations. Science 308:1010–1014. doi:10.1126/science.1106644

    Article  CAS  PubMed  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195. doi:10.2307/1941811

    Article  Google Scholar 

  • Hadi A, Inubushi K, Furukawa Y, Purnomo E, Rasmadi M, Tsuruta H (2005) Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia. Nutr Cycl Agroecosyst 71:73–80. doi:10.1007/s10705-004-0380-2

    Article  CAS  Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns in South American floodplains. J Geophys Res 107(D20):8038. doi: 10.1029/2000JD000306

    Google Scholar 

  • Heinl M (2005) Fire regime and vegetation response in the Okavango Delta, Botswana. PhD dissertation, Department fur Okologie, Technische Universitat Munchen

  • Heinl M, Neuenschwander A, Sliva J, Vanderpost C (2006) Interactions between fire and flooding in a southern African floodplain system (Okavango Delta, Botswana). Landscape Ecol 21:699–709. doi:10.1007/s10980-005-5243-y

    Article  Google Scholar 

  • Heinl M, Frost P, Vanderpost C, Sliva J (2007) Fire activity on dryland and floodplains in the southern Okavango Delta, Botswana. J Arid Environ 68:77–87. doi:10.1016/j.jaridenv.2005.10.023

    Article  Google Scholar 

  • Hemond HF (1980) Biogeochemistry of Thoreau’s Bog, Concord, Mass. Ecol Monogr 50:507–526. doi:10.2307/1942655

    Article  CAS  Google Scholar 

  • IPCC (2007) IPPC fourth assessment report. Intergovernmental panel on climate change. Cambridge University Press, UK

    Google Scholar 

  • Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H (2005) Carbon fluxes from a tropical peat swamp forest floor. Glob Change Biol 11:1788–1797. doi:10.1111/j.1365-2486.2005.001031.x

    Article  Google Scholar 

  • Jones MB, Humphries SW (2002) Impacts of the C4 sedge Cyperus papyrus L. on carbon and water fluxes in an African wetland. Hydrobiologia 488:107–113. doi:10.1023/A:1023370329097

    Article  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Brass M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191. doi:10.1038/nature04420

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Ganguly AR, Bandyopadhyay S, Saigal S, Erickson DJ III, Protopopescu V, Ostrouchov G (2006) Nonlinear statistics reveals stronger ties between ENSO and the tropical hydrological cycle. Geophys Res Lett 33:L24402. doi:10.1029/2006GL027941

    Article  Google Scholar 

  • Kohlmann B, Mitsch WJ, Hansen DO (2008) Ecological management and sustainable development in the humid tropics of Costa Rica. Ecol Eng 34:254–266. doi:10.1016/j.ecoleng.2008.09.004

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. doi:10.1126/science.1097396

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B 363:815–830. doi:10.1098/rstb.2007.2185

    Article  CAS  Google Scholar 

  • Lanting F (1993) Okavango: Africa’s Last Eden. Chronicle Books, San Francisco

    Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs, and wetlands. J Hydrol (Amst) 296:1–22. doi:10.1016/j.jhydrol.2004.03.028

    Article  Google Scholar 

  • Malmer N (1975) Development of bog mires. In: Hasler AD (ed) Coupling of land and water systems. Springer, New York, pp 85–92

    Google Scholar 

  • Maltby E, Turner RE (1983) Wetlands of the world. Geogr Mag 55:12–17

    Google Scholar 

  • Matthews E, Fung I (1987) Methane emissions from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem Cycles 1:61–86. doi:10.1029/GB001i001p00061

    Article  CAS  Google Scholar 

  • Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, pp 317–424

    Google Scholar 

  • Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IBT, Novo EMLM (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob Change Biol 10:530–544. doi:10.1111/j.1365-2486.2004.00763.x

    Article  Google Scholar 

  • Mitra S, Wassmann R, Vlek PLG (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35

    CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, New York, p 582

    Google Scholar 

  • Mitsch WJ, Wu X (1995) Wetlands and global change. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Advances in soil science, soil management and greenhouse effect. Lewis Publishers, Boca Raton, pp 205–230

    Google Scholar 

  • Mitsch WJ, Tejada J, Nahlik AM, Kohlmann B, Bernal B, Hernández CE (2008) Tropical wetlands for climate change research, water quality management and conservation education on a university campus in Costa Rica. Ecol Eng 34:276–288. doi:10.1016/j.ecoleng.2008.07.012

    Article  Google Scholar 

  • Ovenden L (1990) Peat accumulation in northern wetlands. Quat Res 33:377–386. doi:10.1016/0033-5894(90)90063-Q

    Article  Google Scholar 

  • Page SE, Wust RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): Implications for past, present, and future carbon dynamics. J Quat Sci 19:625–635. doi:10.1002/jqs.884

    Article  Google Scholar 

  • Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res 112:D12107. doi:10.1029/2006JD007847

    Article  Google Scholar 

  • Ramberg L, Hancock P, Lindholm M, Meyer T, Ringrose S, Silva J, Van As J, VanderPost C (2006a) Species diversity of the Okavango Delta, Botswana. Aquat Sci 68:310–337. doi:10.1007/s00027-006-0857-y

    Article  Google Scholar 

  • Ramberg L, Wolski P, Krah M (2006b) Water balance and infiltration in a seasonal floodplain in the Okavango Delta, Botswana. Wetlands 26:677–690. doi:10.1672/0277-5212(2006)26[677:WBAIIA]2.0.CO;2

    Article  Google Scholar 

  • Ramberg L, Lindholm M, Bonyongo C, Hessen DO, Heinl M, Masamba W, Murray-Hudson M, VanderPost C, Wolski P (2009) Aquatic ecosystem responses to fire and flood size in the Okavango Delta–Natural experiments on seasonal floodplains. Wetland Ecology and Management (submitted for this same special issue)

  • Ramsar Convention Secretariat (2004) Ramsar Handbook for the Wise Use of Wetlands. Handbook 10, Wetland inventory: a ramsar framework for wetland inventory, 2nd edn. Ramsar Secretariat, Gland, Switzerland

  • Saunders MJ, Jones MB, Kansiime F (2007) Carbon and water cycles in tropical papyrus wetlands. Wetlands Ecol Manage 15:489–498. doi:10.1007/s11273-007-9051-9

    Article  CAS  Google Scholar 

  • Shindell DT, Walter BP, Faluvegi G (2004) Impacts of climate change on methane emissions from wetlands. Geophys Res Lett 31:L21202. doi:10.1029/2004GL021009

    Article  Google Scholar 

  • Sorrell BK, Boon PI (1992) Biogeochemistry of billabong sediments. II. Seasonal variations in methane production. Freshw Biol 27:435–445. doi:10.1111/j.1365-2427.1992.tb00552.x

    Article  CAS  Google Scholar 

  • Strack M (ed) (2008) Peatlands and climate change. International Peat Society, Jyvaskyla 223 pp

    Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinkainen E (2002) Estimating carbon accumulation rates of undrained mires in Finland: application to boreal and subarctic regions. Holocene 12:79–90. doi:10.1191/0959683602hl522rp

    Article  Google Scholar 

  • Tyson PD, Cooper GRJ, McCarthy TS (2002) Millennial to multi-decadal variability in the climate of southern Africa. Int J Climatol 22:1105–1117. doi:10.1002/joc.787

    Article  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75. doi:10.1038/nature05040

    Article  CAS  PubMed  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94. doi:10.1089/ees.2005.22.73

    Article  CAS  Google Scholar 

  • Wieder K, Vitt D (eds) (2006) Boreal peatland ecosystems. Springer, Heidelberg

    Google Scholar 

  • Wolski P, Savenije H, Murray-Hudson M, Gumbricht T (2006) Modelling the hydrology of the Okavango Delta, Botswana using a hybrid GIS-reservoir model. J Hydrol (Amst) 331:58–72. doi:10.1016/j.jhydrol.2006.04.040

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the U.S. Department of Energy Grant DE-FG02-04ER63834 (EARTH University/OSU Program on Collaborative Environmental Research in the Humid Tropics; D Hansen, PI); the U.S. Environmental Protection Agency grant EM-83329801-0 (Olentangy River Wetland Research Park: Teaching, research and outreach; W Mitsch, PI); a 2007 Fulbright Senior Specialist grant (Project 2426 to WJ Mitsch) for collaboration with the Harry Oppenheimer Okavango Research Centre, University of Botswana; and by support from the Olentangy River Wetland Research Park, The Ohio State University. We were assisted in so many ways by Bert Kohlmann, Carlos Hernandez, and Jane Yeomans of EARTH University, Costa Rica; by John Holm, University of Botswana; and by Dave Klarer, Old Woman Creek National Estuarine Research Reserve, Huron, Ohio, USA. This paper is based on an invited presentation at the Society of Wetland Scientists (SWS) 2007 conference in Sacramento, CA. Anne Mischo kindly prepared some of the illustrations. Olentangy River Wetland Research Park Publication 2010–001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Mitsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsch, W.J., Nahlik, A., Wolski, P. et al. Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetlands Ecol Manage 18, 573–586 (2010). https://doi.org/10.1007/s11273-009-9164-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-009-9164-4

Keywords

Navigation