Skip to main content
Log in

Effects of differential grazing on decomposition rate and nitrogen availability in a productive mountain grassland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Grazing may influence nutrient cycling in several ways. In productive mountain grasslands of central Argentina cattle grazing maintain a mosaic of different vegetation patches: lawns, grazed intensively and dominated by high quality palatable plants, and open and closed tussock grasslands dominated by less palatable species. We investigated if differences in the resources deposited on soil (litter and faeces) were associated with litter decomposition rates and soil nitrogen (N) availability across these vegetation patches.

Methods

We compared the three vegetation patches in terms of litter and faeces quality and decomposability, annual litterfall and faeces deposition rate. We determined decomposition rates of litter and faces in situ and decomposability of the same substrates in a common garden using “litter bags”. We determined soil N availability (with resin bags) in the vegetation patches. Also, we performed a common plant substrates decomposition experiment to assess the effect of soil environment on decomposition process. This technique provides important insights about the soil environmental controls of decomposition (i.e. the sum of soil physicochemical and biological properties, and microclimate), excluding the substrate quality.

Results

The litter quality and faeces deposition rate were higher in grazing lawns, but the total amounts of carbon (C) and nitrogen (N) deposited on soil were higher in tussock grasslands, due to higher litterfall in these patches. The in situ decomposition rates of litter and faeces, and of the two common plant substrates were not clearly related to either grazing pressure, litterfall or litter quality (C, N, P, lignin, cellulose or hemicellulose content). In situ litter decomposition rate and soil ammonium availability were correlated with the decomposition rates of both common plant substrates. This may suggest that difference in local soil environment among patch types is a stronger driver of decomposition rate than quality or quantity of the resource that enter the soil.

Conclusions

Our results show that, although high grazing pressure improves litter quality and increases faeces input, the reduction in biomass caused by herbivores greatly reduces C and N input for the litter decomposition pathway. We did not find an accelerated decomposition rate in grazing lawns as proposed by general models. Our results point to soil environment as a potential important control that could mask the effect of litter quality on field decomposition rates at local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adl SM (2003) The habitat. In: Adl SM (ed) The ecology of soil decomposition. CABI Publishing, Cromwell Press, Trowbridge, pp 79–102

    Chapter  Google Scholar 

  • Adler PB, Raff DA, Lauenroth WK (2001) The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128:465–479

    Article  Google Scholar 

  • Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J Wildl Manag 62:1165–1183

    Article  Google Scholar 

  • Augustine DJ, McNaughton SJ (2006) Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9:1242–1256

    Article  CAS  Google Scholar 

  • Bakker ES, Olff H, Boekhoff M, Gleichman JM, Berendse F (2004) Impact of herbivores on nitrogen cycling: contrasting effects of small and large species. Oecologia 138:91–101

    Article  PubMed  CAS  Google Scholar 

  • Bakker ES, Knops JMH, Milchunas DG, Ritchie ME, Olff H (2009) Cross-site comparison of herbivore impact on nitrogen availability in grasslands: the role of plant nitrogen concentration. Oikos 118:1613–1622

    Article  CAS  Google Scholar 

  • Bardgett RD (2005) The soil environment. In: Crawley MJ, Little C, Southwood TRE, Ulfstrand S (eds) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  • Bazely DR, Jefferies RL (1986) Changes in the composition and standing crop of salt-marsh communities in response to the removal of a grazer. J Ecol 74:693–706

    Article  Google Scholar 

  • Berg B, Laskowski R (2006) Methods in studies of organic matter decay. In: Caswell H (ed) Litter decomposition: a guide to carbon and nutrient turnover. Academic Press (Elsevier), London, pp 291–314

    Google Scholar 

  • Binkley D (1984a) Ion exchange resin bags: factors affecting estimates of nitrogen availability. Soil Sci Soc Am J 48:1181–1184

    Article  CAS  Google Scholar 

  • Binkley D (1984b) Does forest removal increase rates of decomposition and nutrient release? Forest Ecol Manage 8:229–233

    Article  Google Scholar 

  • Binkley D, Hart SC (1989) The components of nitrogen availability assessments in forest soils. Adv Soil Sci 10:57–112

    Article  CAS  Google Scholar 

  • Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE (2002) Microbiota, fauna and mesh-size interactions in litter decomposition. Oikos 99:317–323

    Article  Google Scholar 

  • Bussink DW, Oenema O (1998) ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr Cycl Agroecosyst 51:19–33

    Article  Google Scholar 

  • Cabido M, Breimer R, Vega G (1987) Plant communities and associated soil types in a high plateau of the Córdoba mountains, Central Argentina. Mt Res Dev 7:25–42

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Money HA (2002) Principles of terrestial ecosystem ecology. Springer, New York

    Google Scholar 

  • Cingolani AM, Cabido M, Renison D, Solís Neffa V (2003) Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. J Veg Sci 14:223–232

    Article  Google Scholar 

  • Cingolani AM, Renison D, Zak MR, Cabido M (2004) Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units. Remote Sens Environ 92:84–97

    Article  Google Scholar 

  • Cingolani AM, Cabido M, Gurvich DE, Renison D, Díaz S (2007) Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? J Veg Sci 18:911–920

    Article  Google Scholar 

  • Cingolani AM, Vaieretti MV, Gurvich DE, Giorgis MA, Cabido M (2010) Predicting alpha, beta and gamma plant diversity from physiognomic and physical indicators as a tool for ecosystem monitoring. Biol Conserv 143:2570–2577

    Article  Google Scholar 

  • Colladon L, Felici GS, Pazos I (2010) Anuario pluviométrico 2005–2010. Cuenca del Río San Antonio. Sistema del Río Suquía - Provincia de Córdoba. Instituto Nacional del Agua y del Ambienten (INA) y Centro de Investigaciones de la Región Semiárida (CIRSA), Córdoba

    Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • Cornelissen JHC, Pérez Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Coughenour MB (1991) Spatial components of plant-herbivore interactions in pastoral, ranching and native ungulate ecosystems. J Range Manage 44:530–542

    Article  Google Scholar 

  • De Mazancourt C, Loreau M, Abbadie L (1998) Grazing optimization and nutrient cycling: when do herbivores enhance plant production? Ecology 79:2242–2252

    Article  Google Scholar 

  • Denton CS, Bardgett RD, Cook R, Hobbs PJ (1999) Low amounts of root herbivory positively influences the rhizosphere microbial community of a temperate grassland soil. Soil Biol Biochem 31:155–165

    Article  CAS  Google Scholar 

  • Díaz S, Cabido M (1997) Plant functional types and ecosystem function in response to global change: a multiscale approach. J Veg Sci 8:463–474

    Google Scholar 

  • Díaz S, Acosta A, Cabido M (1994) Community structure in montane grasslands of central Argentina in relation to land use. J Veg Sci 5:483–488

    Article  Google Scholar 

  • Díaz S, Cabido M, Casanoves F (1998) Functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Elliot ET, Heil JW, Kelly EF, Monger CH (1999) Soil structural and other physical properties. In: Robertson PG, Coleman DA, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, Oxford, pp 75–77

    Google Scholar 

  • Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455–485

    Article  Google Scholar 

  • Frank DA, Evans RD (1997) Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology 78:2238–2248

    Article  Google Scholar 

  • Frank DA, Groffman PM, Evans RD, Tracy BF (2000) Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands. Oecologia 123:116–121

    Article  Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neil C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage Fiber Analyses. Handbook N_ 379, Department of Agriculture, USDA, Washington D.C. 20

  • Güsewel S, Jewell PL, Edwars PJ (2005) Effects of heterogeneous habitat use by cattle on nutrient availability and litter decomposition in soils an Alpine pasture. Plant Soil 268:135–149

    Article  Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plant stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402

    Article  Google Scholar 

  • Hobbs NT, Swift DM (1988) Grazing in herds: when are nutritional benefits realized? Am Nat 131:760–764

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  PubMed  CAS  Google Scholar 

  • Holland E, Detling JK (1990) Plant response to herbivory and belowground nitrogen cycling. Ecology 71:1040–1049

    Article  Google Scholar 

  • Jarrell WM, Armstrong DE, Grigal DF, Kelly EF, Monger HC, Wedin DA (1999) Soil water and temperature status. In: Robertson PG, Coleman DA, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, Oxford, pp 63–64

    Google Scholar 

  • Kiehl K, Esselink P, Gettner S, Bakker JP (2001) Impact of sheep grazing on net nitrogen mineralization rate in two temperate salt marshes. Plant Biol 3:553–560

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669

    Article  PubMed  CAS  Google Scholar 

  • Lavelle P, Blanchart E, Martín A, Martín S, Spain AV, Toutain F, Barois I, Schaefer R (1993) A hierarchical model for decomposition in terrestrial ecosystem: applications to soils of the humid tropics. Biotropica 25:130–150

    Article  Google Scholar 

  • LeCain DR, Morgan JA, Schuman GE, Reefer JD, Hart RH (2000) Carbon exchange rates in grazed and ungrazed pastures of Wyoming. J Range Manage 53:199–206

    Article  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD, Melillo JM (1985) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66:266–275

    Article  Google Scholar 

  • McIntyre S, Tongway D (2005) Grassland structure in native pastures: links to soil surface condition. Ecol Manag Restor 6:43–50

    Article  Google Scholar 

  • McIvor JG, McIntyre S, Saeli I, Hodgkinson JJ (2005) Patch dynamics in grazed subtropical native pastures in south-east Queensland. Austral Ecol 30:445–464

    Article  Google Scholar 

  • McNaughton SJ (1979) Grazing as an optimization process: grass-ungulate relationships in the Serengeti National Park, Tanzania. Am Nat 113:691–703

    Article  Google Scholar 

  • McNaughton SJ (1984) Grazing lawns: animals in herds, plant form and coevolution. Am Nat 124:863–886

    Article  Google Scholar 

  • O’Lear HA, Seastedt TR, Briggs JM, Blair JM, Ramundo RA (1996) Fire and topographic effects on decomposition rates and nitrogen dynamics of buried wood in tallgrass prairie. Soil Biol Biochem 28:322–329

    Google Scholar 

  • O’Neill J, Webb R (1970) Simultaneous determination of nitrogen, phosphorus and potassium in plant material by automatic methods. J Sci Food Agric 21:217–219

    Article  Google Scholar 

  • Olofsson J, Oksanen L (2002) Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos 96:507–515

    Article  Google Scholar 

  • Olofsson J, de Mazancourt C, Crawley MJ (2007) Contrasting effects of rabbit exclusion on nutrient availability and primary production in grasslands at different time scales. Oecologia 150:582–589

    Article  PubMed  Google Scholar 

  • Olsen YS, Dausse A, Garbutt A, Ford H, Thomas DN, Jones DL (2011) Cattle grazing drives nitrogen and carbon cycling in a temperate salt marsh. Soil Biol Biochem 43:531–541

    Article  CAS  Google Scholar 

  • Orwin KH, Wardle DA, Laurence G, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580–593

    Article  PubMed  Google Scholar 

  • Pérez Harguindeguy N, Vendramini F, Díaz S, Cabido M, Cornelissen JHC, Gurvich DE, Castellanos A (2000a) Descomposición y caracteres foliares de especies de Pteridofitas y Angiospermas del Chaco Serrano de Córdoba, Argentina. Kurtziana 28:35–44

    Google Scholar 

  • Pérez Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000b) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Piene H, Van Cleve K (1978) Weight loss of litter and cellulose bags in a thinned white spruce forest in interior Alaska. Can J For Res 8:42–46

    Article  CAS  Google Scholar 

  • Piñeiro G, Paruelo JM, Oesterheld M (2006) Potential long-term impacts of livestock introduction on carbon and nitrogen cycling in grasslands of Southern South America. Glob Chang Biol 12:1267–1284

    Article  Google Scholar 

  • Piñeiro G, Paruelo JM, Jobbágy EG, Jackson RB, Oesterheld M (2009) Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America. Global Biogeochem Cycles 23:1–14

    Article  Google Scholar 

  • Posse G, Achorena J, Collantes MB (2000) Spatial micro-patterns in the steppe of Tierra del Fuego induced by sheep grazing. J Veg Sci 11:43–50

    Article  Google Scholar 

  • Pucheta E, Cabido M, Díaz S, Funes G (1998a) Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina. Acta Oecol 19:97–105

    Article  Google Scholar 

  • Pucheta E, Vendramini F, Cabido M, Díaz S (1998b) Estructura y funcionamiento de un paztizal de montaña bajo pastoreo y su respuesta luego de su exclusión. Rev Agron La Plata 103:77–92

    Google Scholar 

  • Pucheta E, Bonamici I, Cabido M, Díaz S (2004) Belowground biomass and productivity of a grazed site and a neighbouring ungrazed exclousure in a grassland in central Argentina. Austral Ecol 29:201–208

    Article  Google Scholar 

  • Risch AC, Jurgensen MF, Frank DA (2007) Effects of grazing and soil micro-climate on decomposition rates in a spatio-temporally heterogeneous grassland. Plant Soil 298:191–201

    Article  CAS  Google Scholar 

  • Ritchie ME, Tilman D, Knops JMH (1998) Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79:165–177

    Article  Google Scholar 

  • Ruess RW, McNaughton SJ (1987) Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos 49:101–110

    Article  Google Scholar 

  • Seagle S, McNaughton S, Ruess R (1992) Simulated effects of grazing on soil nitrogen and mineralization in contrasting Serengeti grasslands. Ecology 73:1105–1123

    Article  Google Scholar 

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Ann Rev Entomol 29:25–46

    Article  Google Scholar 

  • Seastedt TR, Ramundo RA, Hayes DC (1988) Maximisation of densities of soil animals by foliage herbivory: empirical evidence, graphical and conceptual models. Oikos 51:243–248

    Article  Google Scholar 

  • Semmartin M, Aguiar MR, Distel R, Moretto AS, Ghersa CM (2004) Litter quality and nutrient cycling affected by grazing-induced replacements in species composition along a precipitation gradient. Oikos 107:149–161

    Article  Google Scholar 

  • Semmartin M, Garibaldi LA, Chaneton E (2008) Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant Soil 303:177–189

    Article  CAS  Google Scholar 

  • Sibbeson EA (1977) Simple ion-exchange resin procedure for extracting plant available elements from soil. Plant Soil 46:665–669

    Article  Google Scholar 

  • Sirotnak JM, Huntly NJ (2000) Direct and indirect effects of herbivores on nitrogen dynamics: voles in riparian areas. Ecology 81:78–87

    Article  Google Scholar 

  • Stark S, Kitöviita MM (2006) Simulated grazer effects on microbial respiration in a subarctic meadow: implications for nutrient competition between plants and soil microorganisms. Appl Soil Ecol 31:20–31

    Article  Google Scholar 

  • Stark S, Wardle DA, Ohtonen R, Helle T, Yeates GW (2000) The effect of reindeer grazing on decomposition, mineralization and soil biota in a dry oligotrophic Scots pine forest. Oikos 90:301–310

    Article  Google Scholar 

  • Stewart A, Frank D (2008) Short sampling intervals reveal very rapid root turnover in a temperate grassland. Oecologia 157:453–458

    Article  PubMed  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Studies in ecology 5. Blackwell, Oxford

    Google Scholar 

  • Tracy BF, Frank DA (1998) Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem: Yellowstone National Park. Oecologia 114:556–562

    Article  Google Scholar 

  • Tsarik I (1975) Decomposition of cellulose in the litter layer and soil of Pinus mugo elfin woodland in the Ukrainian Carpathians. Lesvedenie 1:88–90

    Google Scholar 

  • Vaieretti MV (2010) Estructura de la vegetación y dinámica de la descomposición: El rol de la herbivoría en pastizales de altura bajo uso ganadero (Córdoba, Argentina). Dissertation. Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de Córdoba, Córdoba, Argentina

  • Vaieretti MV, Cingolani AM, Pérez Harguindeguy N, Gurvich DE, Cabido M (2010) Does decomposition of standard materials differ among grassland patches maintained by livestock? Austral Ecol 35:935–943

    Article  Google Scholar 

  • van Winjen HJ, Van der Wal R, Bakker JP (1999) The impact of herbivores on nitrogen mineralization rate: consequences for salt-mash succession. Oecologia 118:225–231

    Article  Google Scholar 

  • Vendramini F, Díaz S, Pérez Harguindeguy N, Cabido M, Llano-Sotelo JM, Castellanos A (2000) Composición química y caracteres foliares en plantas de distintos tipos funcionales del centro-oeste de Argentina. Kurtziana 28:181–193

    Google Scholar 

  • von Müller AR (2011) Selección de hábitat de herbívoros domésticos en las Sierras Grandes de Córdoba. Dissertation. Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de Córdoba, Córdoba, Argentina

  • von Müller AR, Cingolani AM, Vaieretti MV, Renison D (2012) Estimación de carga bovina localizada a partir de frecuencia de deposiciones en un pastizal de montaña. Ecol Austral 22:178–187

    Google Scholar 

  • Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems. J Ecol 86:405–420

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Westerman RL (1990) Soil testing and plant analysis. SSSA Book series nº3. Soil Science Society of America, Madison, p 784

    Google Scholar 

  • Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336

    Article  Google Scholar 

  • Yates CJ, Norton DA, Hobbs RJ (2000) Grazing effects on plant cover, soil and microclimate in fragments woodlands in south-western Australia: implications for restoration. Austral Ecol 25:36–47

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by CONICET (6196/05), Ministerio de Ciencia y Técnica de la Provincia de Córdoba, Argentina, FONCYT - PICT 25712, SECyT, Universidad Nacional de Córdoba, and IAI CRN II 2005 which is supported by the US National Science Foundation (Grant GEO-0452325). We thank our working team for their assistance during field and laboratory work. We are also grateful to three anonymous referees who provided very valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Victoria Vaieretti.

Additional information

Responsible Editor: Gera Hol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaieretti, M.V., Cingolani, A.M., Pérez Harguindeguy, N. et al. Effects of differential grazing on decomposition rate and nitrogen availability in a productive mountain grassland. Plant Soil 371, 675–691 (2013). https://doi.org/10.1007/s11104-013-1831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1831-9

Keywords

Navigation