Skip to main content
Log in

Culture-independent molecular approaches reveal a mostly unknown high diversity of active nitrogen-fixing bacteria associated with Pennisetum purpureum—a bioenergy crop

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Previous studies have shown that elephant grass is colonized by nitrogen-fixing bacterial species; however, these results were based on culture-dependent methods, an approach that introduces bias due to an incomplete assessment of the microbial community. In this study, we used culture-independent methods to survey the diversity of endophytes and plant-associated bacterial communities in five elephant grass genotypes used in bioenergy production.

Methods

The plants of five genotypes of elephant grass were harvested from the experimental area of Embrapa Agrobiologia and divided into stem and root tissues. Total DNA and RNA were extracted from plant tissues and the bacterial communities were analyzed by DGGE and clone library of the 16S rRNA and nifH genes at both the cDNA and DNA levels.

Results

Overall, the patterns based on DNA- and RNA-derived DGGE-profiles differed, especially within tissue samples. DNA-based DGGE indicated that both total bacterial and diazotrophic communities associated with roots (rhizoplane + endophytes) differed clearly from those obtained from stems (endophytes). These results were confirmed by the phylogenetic analyses of RNA-derived sequences of 16S rRNA (total bacteria; 586 sequences), but not for nifH (186). In fact, rarefaction analyses showed a higher diversity of diazotrophic organisms associated with stems than roots. Based on 16S rRNA sequences, the clone libraries were dominated by sequences affiliated to members of Leptotrix (12.8 %) followed by Burkholderia (9 %) and Bradyrhizobium (6.5 %), while most of the nifH clones were closely related to the genus Bradyrhizobium (26 %).

Conclusions

Our results revealed an unexpectedly large diversity of metabolically active bacteria, providing new insights into the bacterial species predominantly found in association with elephant grass. Furthermore, these results can be very useful for the development of new strategies for selection of potential bacteria that effectively contribute to biological nitrogen fixation and enhance the sustainable production of elephant grass as bioenergy crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ando S, Goto M, Meunchang S, Thongra-Ar P, Fujiwara T, Hayashi H, Yoneyama T (2005) Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.). J Soil Sci Plant Nutr 51:303–308

    Article  CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on nonlegumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Arzumanyan VG, Sakharova ZV, Panikov NS, Vshivtsev VS (1997) Growth and nitrogen-fixing activity of the batch culture of Xanthobacter autotrophicus at various concentrations of dissolved oxygen. Microbiology 66:627–630

    CAS  Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:922–928

    Article  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee S, Lee LY, Oltmanns H, Cao H, Veena Cuperus J, Gelvin SB (2008) IMPa-4, an Arabidopsis importin α isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20:2661–2680

    Article  PubMed  CAS  Google Scholar 

  • Brasil MS, Baldani JI, Baldani VLD (2005) Occurrence and diversity of diazotrophic bacteria associated to forage grasses of the Pantanal in the state of Mato Grosso do Sul. Rev Bras Cienc Solo 29:179–190

    Article  CAS  Google Scholar 

  • Brons JK, Van Elsas JD (2008) Analysis of bacterial communities in soil by use of denaturing gradient gel electrophoresis and clone libraries, as influenced by different reverse primers. Appl Environ Microbiol 74:2717–2727

    Article  PubMed  CAS  Google Scholar 

  • Burbano CS, Liu Y, Roesner KL, Reis VM, Caballero-Mellado J, Reinhold-Hurek B, Hurek T (2011) Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. Environ Microbiol Rep 3:383–389

    Article  PubMed  CAS  Google Scholar 

  • Bürgmann H, Meier S, Bunge M, Widmer F, Zeyer J (2005) Effects of model root exudates on structure and activity of a soil diazotroph community. Environ Microbiol 7:1711–1724

    Article  PubMed  Google Scholar 

  • Byrt CS, Grof CPL, Furbank RT (2011) C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. J Integr Plant Biol 53:120–135

    Article  PubMed  CAS  Google Scholar 

  • Cantera JJL, Kawasaki H, Seki T (2004) The nitrogen-fixing gene (nifH) of Rodopseudomonas palustris: a case of lateral gene transfer. Microbiology 150:2237–2246

    Article  PubMed  CAS  Google Scholar 

  • Cébron A, Norini MP, Beguiristain T, Leyval C (2008) Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDalpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159

    Article  PubMed  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, de Lajudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  PubMed  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    PubMed  CAS  Google Scholar 

  • Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER (v6): user manual/tutorial. PRIMER-E, Plymouth, 192pp

    Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, Mcgarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145

    Article  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Debroas D, Humbert JF, Enault F, Bronner G, Faubladier M, Cornillot E (2009) Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget–France). Environ Microbiol 11:2412–2424

    Article  PubMed  CAS  Google Scholar 

  • Demba Diallo M, Reinhold-Hurek B, Hurek T (2008) Evaluation of PCR primers for universal nifH gene targeting and for assessment of transcribed nifH pools in roots of Oryza longistaminata with and without low nitrogen input. FEMS Microbiol Ecol 65:220–228

    Article  PubMed  Google Scholar 

  • Elliott GN, Chen WM, Chou JH, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, De Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180

    Article  PubMed  CAS  Google Scholar 

  • Fahrbach M, Kuever J, Remesch M, Huber BE, Kämpfer P, Dott W, Hollender J (2008) Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol 58:2215–2223

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Pfitzner B, Schmid M, Simões-Araújo JL, Reis VM, Pereira W, Ormeño-Orrillo E, Hofmann A, Martinez-Romero E, Baldani JI, Hartmann A (2012) Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil 356:83–99

    Article  CAS  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: absence of nod genes in photosynthetic Bradyrhizobia. Science 316:1307–1312

    Article  PubMed  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  PubMed  Google Scholar 

  • Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. Soil Biol 9:15–31

    Article  Google Scholar 

  • Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, Van Overbeek LS, Van Elsas JD (2011) Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol Ecol 77:154–164

    Article  PubMed  CAS  Google Scholar 

  • Hardoim PR, Hardoim CCP, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H (2006) Endophytic actinomycetes and their interactions with host plants. Actinomycetologica 20:72–81

    Article  CAS  Google Scholar 

  • Hayden HL, Drake J, Imhof M, Oxley APA, Norng S, Mele PM (2010) The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in South-Eastern Australia. Soil Biol Biochem 42:1774–1783

    Article  CAS  Google Scholar 

  • James EK, Reis VM, Olivares FL, Baldani JI, Dobereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    Article  CAS  Google Scholar 

  • Kaiser O, Puhler A, Selbitschka W (2001) Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv Westar) employing cultivation dependent and cultivation-independent approaches. Microb Ecol 42:136–149

    PubMed  CAS  Google Scholar 

  • Kannan V, Sureendar R (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49:158–164

    Article  PubMed  CAS  Google Scholar 

  • Kirchhof G, Reis VM, Baldani JI, Eckert B, Döbereiner J, Hartmann A (1997a) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 104:45–55

    Article  Google Scholar 

  • Kirchhof G, Schloter M, Abmus B, Hartmann A (1997b) Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biol Biochem 29:853–862

    Article  CAS  Google Scholar 

  • Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen fixing bacterial species occurring in C4-energy plants. Int J Syst Evol Microbiol 51:157–168

    PubMed  CAS  Google Scholar 

  • Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733

    Article  PubMed  CAS  Google Scholar 

  • Ladha JK, So RB (1994) Numerical taxonomy of photosynthetic rhizobia nodulating Aeschynomene species. Int J Syst Bacteriol 44:62–73

    Article  Google Scholar 

  • Li YH, Liu QF, Liu Y, Zhu JN, Zhang Q (2011) Endophytic bacterial diversity in roots of Typha angustifolia L. in the constructed Beijing Cuihu Wetland (China). Res Microbiol 162:124–131

    Article  PubMed  Google Scholar 

  • Lindström K, Murwira M, Willems A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 161:453–463

    Article  PubMed  Google Scholar 

  • López-López A, Rogel MA, Ormeno-Orrillo E, Martinez-Romero J, Martinez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327

    Article  PubMed  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed  CAS  Google Scholar 

  • Malik KA, Claus D (1979) Xanthobacter flavus, a new species of nitrogen-fixing hydrogen bacteria. Int J Syst Bacteriol 29:283–287

    Article  Google Scholar 

  • Mårtensson L, Díez B, Wartiainen I, Zheng WW, El-Shehawy R, Rasmussen U (2009) Diazotrophic diversity, nifH gene expression and nitrogenase activity in a rice paddy field in Fujian, China. Plant Soil 325:207–218

    Article  Google Scholar 

  • Menna P, Hungria M (2011) Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol 61:3052–3067

    Article  PubMed  CAS  Google Scholar 

  • Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation, partial characterization, and effect of plant growth promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54

    Article  CAS  Google Scholar 

  • Morais RF, Souza BJ, Leite JM, Soares LH, Alves BJR, Boddey RM, Urquiaga S (2009) Elephant grass genotypes for bioenergy production by direct biomass combustion. Pesqui Agropecu Bras 44:133–140

    Google Scholar 

  • Morais RF, Quesada DM, Reis VM, Urquiaga S, Alves BJR, Boddey RM (2012) Contribution of biological nitrogen fixation to Elephant grass (Pennisetum purpureum Schum.). Plant Soil 356:23–34

    Article  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2010) Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World J Microbiol Biotechnol 26:193–203

    Article  CAS  Google Scholar 

  • Nzoue A, Miche L, Klonowska A, Laguerre G, Delajudie P, Moulin L (2009) Multilocus sequence analysis of bradyrhizobia isolated from Aeschynomene species in Senegal. Syst Appl Microbiol 32:400–412

    Article  PubMed  CAS  Google Scholar 

  • Pariona-Llanos R, Ibañez De Santi FFF, Soto Gonzales HH, Barbosa HR (2010) Influence of organic fertilization on the number of culturable diazotrophic endophytic bacteria isolated from sugarcane. Eur J Soil Biol 46:387–393

    Article  Google Scholar 

  • Pereira e Silva MC, Semenov AV, Van Elsas JD, Salles JF (2011) Seasonal variations in the diversity and abundance of diazotrophic communities across soils. FEMS Microbiol Ecol 77:57–68

    Article  PubMed  CAS  Google Scholar 

  • Perin L, Silva MF, Ferreira JS, Canuto EL, Medeiros AFA, Olivares FL, Reis VM (2003) Avaliação da capacidade de estabelecimento endofítico de estirpes de Azospirillum e Herbaspirillum em milho e arroz. Agronomia 37:47–53

    Google Scholar 

  • Perin L, Martinez-Aguilar L, Paredes VG, Baldani JI, Estrada-De Los Santos P, Reis VM, Caballero-Mellado J (2006) Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugarcane and maize. Int J Syst Evol Microbiol 56:1931–1937

    Article  PubMed  CAS  Google Scholar 

  • Pisa G, Magnani GS, Weber H, Souza EM, Faoro H, Monteiro RA, Daros E, Baura V, Bespalhok JP, Pedrosa FO, Cruz LM (2011) Diversity of 16S rRNA genes from bacteria of sugarcane rhizosphere soil. Braz J Med Biol Res 12:1215–1221

    Article  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Xing K, Fei SM, Lin Q, Chen XM, Cao CL, Sun Y, Wang Y, Li WJ, Jiang JH (2011) Pseudonocardia sichuanensis sp. nov., a novel endophytic actinomycete isolated from the root of Jatropha curcas L. Antonie Van Leeuwenhoek 99:395–401

    Article  PubMed  Google Scholar 

  • Rademaker JLW, De Bruijn FJ (1997) Characterization and classification of microbes by REP-PCR genomic fingerprinting and computer-assisted pattern analysis. In: Caetano-Anollés G, Gresshoff PM (eds) DNA markers: protocols, applications and overviews. John Wiley and Sons, New York, pp 151–171

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Reis VM, Reis Junior FB, Salles JF, Schloter M (2000) Characterisation of different polyclonal antisera to quantify Herbaspirillum spp. in Elephant grass (Pennisetum purpureum Schum.). Symbiosis 29:139–150

    Google Scholar 

  • Reis VM, Reis Junior FB, Quesada DM, Oliveira OCA, Alves BJR, Urquiaga S, Boddey RM (2001) Biological nitrogen fixation associated with tropical pasture grasses. Aust J Plant Physiol 28:837–844

    Google Scholar 

  • Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104

    Article  CAS  Google Scholar 

  • Salles JF, De Souza FA, Van Elsas JD (2002) Molecular method to assess the diversity of Burkholderia species in environmental samples. Appl Environ Microbiol 68:1595–1603

    Article  PubMed  CAS  Google Scholar 

  • Samson R, Mani S, Boddey R, Sokhansanj S, Quesada D, Urquiaga S, Reis V, Ho Lem C (2005) The potential of C4 perennial grasses for developing a global BIOHEAT industry. CRC Crit Rev Plant Sci 24:1–35

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Ait Barka E, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  PubMed  CAS  Google Scholar 

  • Simonet P, Grosjean M, Arvind KM, Nazaret S, Cournoyer B, Normand P (1991) Frankia genus-specific characterization by polymerase chain reaction. Appl Environ Microbiol 57:3278–3286

    PubMed  CAS  Google Scholar 

  • Spring S, Kämpfer P, Ludwig W, Schleifer KH (1996) Polyphasic characterization of the genus Leptothrix: new descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend. Syst Appl Microbiol 19:634–643

    Article  CAS  Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Tamaki H, Matsuzawa H, Nigaya M, Mori K, Kamagata Y (2012) Microbial community analysis in the roots of aquatic plants and isolation of novel microbes including an organism of the Candidate phylum OP10. Microbes Environ 27:149–157

    Article  PubMed  Google Scholar 

  • Taylor SH, Hulme SP, Rees M, Ripley BS, Woodward FI, Osborne CP (2010) Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol 185:780–791

    Article  PubMed  CAS  Google Scholar 

  • Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008) Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes Environ 23:89–93

    Article  PubMed  Google Scholar 

  • Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449

    Article  CAS  Google Scholar 

  • Tian J, Venkatachalam P, Liao H, Yan X, Raghothama KG (2007) Molecular cloning and characterization of phosphorus starvation responsive genes in common bean (Phaseolus vulgaris L.). Planta 227:151–165

    Article  PubMed  CAS  Google Scholar 

  • Van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77–87

    Article  Google Scholar 

  • Videira SS, Araújo JLS, Rodrigues LS, Baldani VLD, Baldani JI (2009) Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett 293:11–19

    Article  PubMed  CAS  Google Scholar 

  • Videira SS, Oliveira DM, Morais RF, Borges WL, Baldani VLD, Baldani JI (2012) Genetic diversity and plant growth promoting traits of diazotrophic bacteria isolated from two Pennisetum purpureum Schum. genotypes grown in the field. Plant Soil 356:51–66

    Article  CAS  Google Scholar 

  • Wagner R (1994) The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol 161:100–109

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

  • Wartiainen I, Eriksson T, Zheng W, Rasmussen U (2008) Variation in the active diazotrophic community in rice paddy-nifH PCR-DGGE analysis of rhizosphere and bulk soil. Appl Soil Ecol 39:65–75

    Article  Google Scholar 

  • Wu L, Ma K, Lu Y (2009) Prevalence of betaproteobacterial sequences in nifH gene pools associated with roots of modern rice cultivars. Microb Ecol 57:58–68

    Article  PubMed  CAS  Google Scholar 

  • Xavier DF, Botrel MA, Verneque RS, Freitas VP, Boddey RM (1998) Estabilidade da produção de forragem de cultivares de capim-elefante em solo com baixa disponibilidade de nitrogênio. Pasturas Tropicales 20:35–40

    Google Scholar 

  • Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–732

    Article  PubMed  CAS  Google Scholar 

  • Zehr JP, Mc Reynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was part of the activities carried out at Department of Microbial Ecology, Center for Ecological and Evolutionary Studies, University of Groningen. The authors thank the support in the form of fellowships to SSV by Foundation for Research Support in the State of Rio de Janeiro (FAPERJ) and thankfully acknowledged Embrapa and CNPq/INCT-FBN for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Falcão Salles.

Additional information

Responsible Editor: Katharina Pawlowski.

In memoriam (Péricles de Souza Galisa)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Denaturing gradient gel electrophoresis (DGGE) profile of 16S rDNA (A) and rRNA (B) from communities associated with root and stem tissues of 5 elephant grass genotypes. Three replicates were used per sample. The samples included in these figures are taken from root (R) and stem (S) of genotype Cameroon (G1), Gramafante (G2); BAG 02 (G3), Roxo (G4), CNPGL91F06-3 (G5) and M represent DGGE marker. (PPT 691 kb)

Figure S2

Denaturing gradient gel electrophoresis (DGGE) profile of nifH gene fragments from DNA (A) and RNA (B) pools obtained from root and stem tissues of 5 elephant grass genotypes. Three replicates were used per sample. The samples included in these figures are taken from root (R) and stem (S) of genotype Cameroon (G1), Gramafante (G2); BAG 02 (G3), Roxo (G4), CNPGL91F06-3 (G5) and M represent DGGE marker. (PPT 637 kb)

Figure S3

Venn diagrams based on the 16S rRNA gene libraries from root (A), stem (B) and all sequences together (C) showing the intersections and peculiarities among tree elephant grass genotypes including G1- Cameroon, G4- Roxo e G5- CNPGL91F06-3. (PPT 113 kb)

Table S1

Information for elephant grass genotypes (cultivars) used in the experiments. The genotypes are represented in the following format: Cameroon (G1), Gramafante (G2), BAG 02 (G3), Roxo (G4), and CNPGL91F06-3 (G5). (PPT 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Videira, S.S., Pereira e Silva, M.d.C., de Souza Galisa, P. et al. Culture-independent molecular approaches reveal a mostly unknown high diversity of active nitrogen-fixing bacteria associated with Pennisetum purpureum—a bioenergy crop. Plant Soil 373, 737–754 (2013). https://doi.org/10.1007/s11104-013-1828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1828-4

Keywords

Navigation