Skip to main content
Log in

Transgenic Bt rice has adverse impacts on CH4 flux and rhizospheric methanogenic archaeal and methanotrophic bacterial communities

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

The effect of transgenic insect-resistant crops on soil microorganisms has become an issue of public concern. The goal of this study was to firstly realize the variation of in situ methane (CH4) emission flux and methanogenic and methanotrophic communities due to planting transgenic Bt rice (Bt) cultivar.

Methods

CH4 emitted from paddy soil was collected by static closed chamber technique. Denaturing gradient gel electrophoresis and real-time PCR methods were employed to analyze methanogenic archaeal and methanotrophic bacterial community structure and abundance.

Results

Results showed that planting Bt rice cultivar effectively reduced in situ CH4 emission flux and methanogenic archaeal and methanotrophic bacterial community abundance and diversity. Data analysis showed that in situ CH4 emission flux increased significantly with the increase of methanogenic archaeal abundance (R 2 = 0.839, p < 0.001) and diversity index H′ (R 2 = 0.729, p < 0.05), whereas was not obviously related to methanotrophic bacterial community.

Conclusions

Our results suggested that the lower in situ CH4 emission flux from Bt soil may result from lower methanogenic archaeal community abundance and diversity, lower methanogenic activity and higher methanotrophic activity. Moreover, our results inferred that specific functional microorganisms may be a more sensitive indicator than the total archaeal, bacterial or fungal population to assess the effects of transgenic insect-resistant plants on soil microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Bt:

Transgenic Bt rice

Ck:

Non-transgenic parental rice control

S1:

Seedling stage

S2:

Tillering stage

S3:

Mid-season aeration stage

S4:

Filling stage

S5:

Maturing stage

DGGE:

Denaturing gradient gel electrophoresis

OTU:

Operational taxonomic unit

PCA:

Principal component analysis

References

  • Amann RI, Ludwig W, Scheidler KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev 59:143–169

    CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Rennenberg H (2001) Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230:77–86

    Article  CAS  Google Scholar 

  • Bellissimi E, Van Dijken JP, Pronk JT, Van Maris AJA (2009) Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 9:358–364

    Article  PubMed  CAS  Google Scholar 

  • Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke EG, Carouge C, Langenfelds RL, Lathiėre J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Cai ZC, Tsuruta H, Gao M, Wei CF (2003) Options for mitigating methane emission from a permanently flooded rice field. Glob Change Biol 9:37–45

    Article  Google Scholar 

  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B, Nuti MP, Miclaus N, Giovannetti M (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on Beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729

    Article  PubMed  CAS  Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Advan Agron 96:1–63

    Article  CAS  Google Scholar 

  • Conrad R, Rothfuss F (1991) Methane oxidation in the soil surface layer of a flooded ride field and the effect of ammonium. Biol Fert Soils 12:28–32

    Article  CAS  Google Scholar 

  • Conrad R, Erkel C, Liesack W (2006) Rice Cluster I methanogens, an important group of Archaea producting greenhouse gas in soil. Curr Opin Biotechnol 17:262–267

    Article  PubMed  CAS  Google Scholar 

  • Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074

    PubMed  CAS  Google Scholar 

  • Crecchio C, Stotzky G (2001) Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp. Kurstaki bound on complexes of montmorillonite-humic acids-AI hudroxypolymers. Soil Biol Biochem 33:573–581

    Article  CAS  Google Scholar 

  • Curtis IS, Nam HG, Yun JY, Seo KH (2002) Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res 11:249–256

    Article  PubMed  CAS  Google Scholar 

  • Das S, Adhya TK (2012) Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated CO2 and temperature interaction. Soil Biol Biochem 47:36–45

    Article  CAS  Google Scholar 

  • Devare MH, Jones CM, Thies JE (2004) Effect of Cry3Bb transgenic corn and tefluthrin on the soil microbial community. J Environ Qual 33:837–843

    Article  PubMed  CAS  Google Scholar 

  • Devare M, Londoňo-R LM, Thies JE (2007) Neither transgenic Bt maize (MON863) nor tefluthrin insecticide adversely affect soil microbial activity or biomass: a 3-year field analysis. Soil Biol Biochem 39:2038–2047

    Article  CAS  Google Scholar 

  • Ding WX, Cai ZC, Tsurata H, Li XP (2003) Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 51:167–173

    Article  PubMed  CAS  Google Scholar 

  • Fang H, Dong B, Yan H, Tang FF, Wang BC, Yu YL (2012) Effect of vegetation of transgenic Bt rice lines and their straw amendment on soil enzymes, respiration, functional diversity and community structure of soil microorganisms under field conditions. J Environ Sci 24:1259–1270

    Article  CAS  Google Scholar 

  • FAOSTAT (2006) FAOSTAT Database. Food and Agriculture Organization of the United Nations, Rome, Italy. http://faostat.fao.org/

  • Freitag TE, Toet S, Ineson P, Prosser JI (2010) Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microbiol Ecol 73:157–165

    PubMed  CAS  Google Scholar 

  • Gilbert B, Frenzel P (1998) Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the microenvironment. Soil Biol Biochem 30:1903–1916

    Article  CAS  Google Scholar 

  • Griffiths BS, Caul S, Thompson J, Birch ANE, Scrimgeour C, Cortet J, Foggo A, Hackett CA, Krogh PH (2005) A comparison of soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis Cry1Ab toxin. Plant Soil 275:135–146

    Article  CAS  Google Scholar 

  • Griffiths BS, Caul S, Thompson J, Birch ANE, Scrimgeour C, Andersen MN, Cortet J, Messean A, Sausse C, Lacroix B, Krogh PH (2006) Soil microbial and faunal community responses to Bt maize and insecticide in two soils. J Environ Qual 35:734–741

    Article  PubMed  CAS  Google Scholar 

  • Guo YQ, Liu JX, Lu Y, Zhu WY, Denman SE, McSweeney CS (2008) Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett Appl Microbiol 47:421–426

    Article  PubMed  CAS  Google Scholar 

  • Hirota M, Tang Y, Hu Q, Hirata S, Kato T, Mo W, Cao G, Mariko S (2004) Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biol Biochem 36:737–748

    Article  CAS  Google Scholar 

  • Holmes AJ, Costello AM, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase ammonia monooxygebase may be evolutionarily related. FEMS Microbiol Lett 132:203–208

    Article  PubMed  CAS  Google Scholar 

  • Hu HY, Liu XX, Zhao ZW, Sun JG, Zhang QW, Liu XZ, Yu Y (2009) Effects of repeated cultivation of transgenic Bt cotton on functional bacterial populations in rhizosphere soil. World J Microbiol Biotechnol 25:357–366

    Article  CAS  Google Scholar 

  • Hussain Q, Liu YZ, Zhang AF, Pan GX, Li LQ, Zhang XH, Song XY, Cui LQ, Jin ZJ (2011) Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux. FEMS Microbiol Ecol 78:116–128

    Article  PubMed  CAS  Google Scholar 

  • Icoz I, Stotzky G (2008) Cry3Bb1 protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil. Transgenic Res 17:609–620

    Article  PubMed  CAS  Google Scholar 

  • Icoz I, Saxena D, Andow D, Zwahlen C, Stotzky G (2008) Microbial populations and enzyme activities in soil in situ under transgenic corn expressing cry proteins from Bacillus thuringiensis. J Environ Qual 37:647–662

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I. II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  • Korch C, Drabkin H (1999) Improved DNA Sequencing Accuracy and Detection of Heterozygous Alleles Using Manganese Citrate and Different Fluorescent Dye Terminators. Genome Res 9:588–595

    PubMed  CAS  Google Scholar 

  • Krause S, Lüke C, Frenzel P (2009) Spatial heterogeneity of methanotrophs: a geostatistical analysis of pmoA -based T-RFLP patterns in a paddy soil. Environ Microbiol Reports 1:393–397

    Article  CAS  Google Scholar 

  • Li CL, Zhang JD, Hou ZQ (1993) Techniques for high yield cultivations of several main crops. China Scientific and Technological Publishing House, Beijing (In Chinese)

    Google Scholar 

  • Li XG, Liu B, Heia S, Liu DD, Han ZM, Zhou KX, Cui JJ, Luo JY, Zheng YP (2009) The effect of root exudates from two transgenic insect-resistant cotton lines on the growth of Fusarium oxysporum. Transgenic Res 18:757–767

    Article  PubMed  CAS  Google Scholar 

  • Li XG, Liu B, Cui JJ, Liu DD, Ding S, Gilna B, Luo JY, Fang ZX, Cao W, Han ZM (2011) NO evidence of persistent effects of continuously planted transgenic insect-resistant cotton on soil microorganisms. Plant Soil 339:247–257

    Article  CAS  Google Scholar 

  • Liu W, Lu HH, Wu WX, Wei QK, Chen YX, Thies JE (2008) Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol Biochem 40:475–486

    Article  CAS  Google Scholar 

  • Lu RK (1999) Soil Agro-Chemical Analyses. Agricultural Technical Press of China, Beijing (in Chinese)

    Google Scholar 

  • Lu YH, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309:1088–1089

    Article  PubMed  CAS  Google Scholar 

  • Lu YH, Lueders T, Friedrich MW, Conrad R (2005) Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol 7:326–336

    Article  PubMed  CAS  Google Scholar 

  • Lu HH, Wu WX, Chen YX, Zhang XJ, Devare M, Thies JE (2010) Decomposition of Bt transgenic rice residues and response of soil microbial community in rapeseed-rice cropping system. Plant Soil 336:279–290

    Article  CAS  Google Scholar 

  • Lüke C, Bodrossy L, Lupotto E, Frenzel P (2011) Methanotrophic bacteria associated to rice roots: the cultivar effect assessed by T-RFLP and microarray analysis. Environ Microbiol Reports 3:518–525

    Article  Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol 148:3521–3530

    CAS  Google Scholar 

  • McDonald IR, Murrell JC (1997) The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 156:205–210

    Article  PubMed  CAS  Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Minoda T, Kimura M, Wada E (1996) Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields. J Geophys Res 101:21091–21097

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nunoura T, Oida H, Miyazaki J, Miyashita A, Imachi H, Takai K (2008) Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS Microbiol Ecol 64:240–247

    Article  PubMed  CAS  Google Scholar 

  • Ritchie DA, Edwards C, McDonald IR, Murrell JC (1997) Detection of methanogens and methanotrophs in natural environments. Glob Change Biol 3:339–350

    Article  Google Scholar 

  • Shen RF, Cai H, Gong WH (2006) Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil. Plant Soil 285:149–159

    Article  CAS  Google Scholar 

  • State Statistical Bureau (2009) China Statistical yearbook 2009. http://www.stats.gov.cn/tjsj/ndsj/2009/indexch.htm

  • Stelly DM, Altman DW, Kohel R, Rangan TS, Commiskey E (1989) Cytogenetic abnormalities of cotton somaclones from callus cultures. Genome 32:762–770

    Article  Google Scholar 

  • Stotzky G (2000) Persistent and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J Environ Qual 29:691–705

    Article  CAS  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Over-expression of malate dehydrogenase in transgenic alfalfa enhance organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye M, Dufault NS, Dornbusch MR, Allan DL, Vance CP, Samac DA (2003) Influence of enhanced malate dehydrogenase expression by safalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biol Biochem 35:1103–1113

    Article  CAS  Google Scholar 

  • Tu J, Datta K, Oliva N, Zhang GA, Xu CG, Khush GS, Zhang QF, Datta SK (2003) Site-independent integrated transgenes in the elite restorer rice line Minghui 63 allow removal of a selectable marker from the gene of interest by self-segregation. Plant Biotechnol J 1:155–165

    Article  PubMed  CAS  Google Scholar 

  • Vineela C, Wani SP, Srinivasarao C, Padmaja B, Vittal KPR (2008) Microbial properties of soils as affected by cropping and nutrient management practices in several long-term manorial experiments in the semi-arid tropics of India. Appl Soil Ecol 40:165–173

    Article  Google Scholar 

  • Wang ZP, Delaune RD, Patrick WH, Masscheleyn PH (1993) Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci Soc Amer J 57:382–385

    Article  CAS  Google Scholar 

  • Wang H, Ye Q, Wang W, Wu L, Wu W (2006) Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil. Environ Pollut 143:449–455

    Article  PubMed  CAS  Google Scholar 

  • Wassmann R, Aulakh MS (2000) The role of rice plants in regulating mechanisms of methane emission. Biol Fert Soils 31:20–29

    Article  CAS  Google Scholar 

  • Watanabe A, Takeda T, Kimura M (1999) Evaluation of origins of CH4 carbon emitted from rice paddies. J Geophys Res 104:23623–23629

    Article  CAS  Google Scholar 

  • Watanabe T, Kimura M, Asakawa S (2006) Community structure of methanogenic archaea in paddy field soil under double cropping (rice-wheat). Soil Biol Biochem 38:1264–1274

    Article  CAS  Google Scholar 

  • Weisskopf L, Le Baton RC, Kohler F, Page V, Jossi M, Gobat JM, Martinoia E, Aragno M (2008) Spatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid serection: A one-year microcosm study on lupin and wheat. Soil Biol Biochem 40:1772–1780

    Article  CAS  Google Scholar 

  • Wu WX, Ye QF, Min H, Duan XJ, Jin WM (2004) Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biol Biochem 36:289–295

    Article  CAS  Google Scholar 

  • Yan X, Akiyama H, Yagi K, Akimoto H (2009) Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change guidelines. Global Biogeochem Cycle 23. doi:10.1029/2008GB003299

  • Yue J, Shi Y, Liang W, Wu J, Wang CR, Huang GH (2005) Methane and nitrous oxide emissions from rice field and related microorganism in black soil, northeastern China. Nutr Cycl Agroecosyst 73:293–301

    Article  CAS  Google Scholar 

  • Zhang Y, Shewry PR, Jones H, Barcelo P, Lazzeri PA, Halford NG (2001) Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant J 28:431–441

    Article  PubMed  CAS  Google Scholar 

  • Zhang YH, Ding WX, Cai ZC, Valerie P, Han FX (2010) Response of methane emission to invasion of Spartina alterniflora and exogenous N deposition in the coastal salt marsh. Atmos Environ 44:4588–4594

    Article  CAS  Google Scholar 

  • Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H (2005) Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol 138:297–303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 40830531), by the National Science and Technology Major Project of China (2008ZX08012-005 and 2011ZX08012-005), by the Academic Priority Development Program of Jiangsu Higher Education Institution of China (164320H101), and by the 211 Project for Nanjing Normal University (1843203623). We sincerely thank Professor Zhang Guoan at the College of Plant Science & Technology of Huazhong Agricultural University, for providing the transgenic and non-transgenic parental rice seeds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhui Zhong or Biao Liu.

Additional information

Responsible Editor: Dan Murphy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, C., Zhong, W., Shen, W. et al. Transgenic Bt rice has adverse impacts on CH4 flux and rhizospheric methanogenic archaeal and methanotrophic bacterial communities. Plant Soil 369, 297–316 (2013). https://doi.org/10.1007/s11104-012-1522-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1522-y

Keywords

Navigation