Skip to main content
Log in

Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims and methods

The effects of changing climate on ectomycorrhizal (EcM) fine roots were studied in northern Sweden by manipulating soil temperature for 14 years and/or by fertilizing for 22 years. Fine root biomass, necromass, EcM root tip biomass, morphology and number as well as mycelia production were determined from soil cores and mesh bags.

Results and conclusions

The fine root biomass and necromass were highest in the fertilized plots, following similar trends in the above-ground biomass, whereas the EcM root tip biomass per basal area decreased by 22 % in the fertilized plots compared to the control. Warming increased the fine root biomass, live/dead-ratio and the number of EcM root tips in the mineral soil and tended to increase the production of EcM mycelia. Greater fine root biomass meant more EcM root tips, although the tip frequency was not affected by fertilization or warming. Significantly higher specific root length of EcM root tips indicated an increased need for nutrients in warmed and in unfertilized plots. Better nutrient supply and warmer soil temperature provide a potential to increase the flow of carbon into the soil via increased fine root biomass, but the carbon balance also depends on root turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Ahlström K, Persson H, Börjesson I (1988) Fertilization in a mature Scots pine (Pinus sylvestris L.) stand—effects on fine roots. Plant Soil 106:179–190

    Article  Google Scholar 

  • Alexander I, Fairley R (1983) Effects of N fertilisation on populations of fine roots and mycorrhizas in spruce humus. Plant Soil 71:49–53

    Article  CAS  Google Scholar 

  • Allison SD, Treseder KK (2011) Climate change feedbacks to microbial decomposition in boreal soils. Fungal Ecol 4:362–374

    Article  Google Scholar 

  • Andersson P, Berggren D, Nilsson I (2002) Indices for nitrogen status and nitrate leaching from Norway spruce (Picea abies (L.) Karst.) stands in Sweden. For Ecol Manag 157:39–53

    Article  Google Scholar 

  • Arft AM, Walker MD, Gurevitch J et al (1999) Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol Monogr 69:491–511

    Google Scholar 

  • Bagherzadeh A, Brumme R, Beese F (2008) Temperature dependence of nitrogen mineralization and microbial status in OH horizon of a temperate forest ecosystem. For Res 19:37–43

    CAS  Google Scholar 

  • Berggren D, Bergkvist B, Johansson MB, Langvall O, Majdi H, Melkerud P, Nilsson Å, Weslien P, Olsson M (2004) A description of LUSTRA’s common field sites. Rep For Ecol For Soils 87:1–42

    Google Scholar 

  • Bergh J, Linder S (1999) Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Glob Chang Biol 5:245–253

    Article  Google Scholar 

  • Bergh J, Linder S, Lundmark T, Elfving B (1999) The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. For Ecol Manag 119:51–62

    Article  Google Scholar 

  • Bidartondo MI, Ek H, Wallander H, Söderström B (2001) Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi? New Phytol 151:543–550

    Article  CAS  Google Scholar 

  • Björk RG, Majdi H, Klemedtsson L, Lewis-Jonsson L, Molau U (2007) Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. New Phytol 176:862–873

    Article  PubMed  CAS  Google Scholar 

  • Borken W, Kossmann G, Matzner E (2007) Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands. Plant Soil 292:79–93

    Article  CAS  Google Scholar 

  • Brandrud TE, Timmermann V (1998) Ectomycorrhizal fungi in the NITREX site at Gårdsjön, Sweden; below and above-ground responses to experimentally-changed nitrogen inputs 1990–1995. For Ecol Manag 101:207–214

    Article  Google Scholar 

  • Bronson DR, Gower ST, Tanner M, Linder S, Van Herk I (2008) Response of soil surface CO2 flux in a boreal forest to ecosystem warming. Glob Chang Biol 14:856–867

    Article  Google Scholar 

  • Chapin FS III, Shaver GR (1996) Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77:822–840

    Article  Google Scholar 

  • Claus A, George E (2005) Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Can J For Res 35:1617–1625

    Article  Google Scholar 

  • Clemmensen KE, Michelsen A, Jonasson S, Shaver GR (2006) Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol 171:391–404

    Article  PubMed  Google Scholar 

  • Cudlin P, Kieliszewska-Rokicka B, Rudawska M, Grebenc T, Alberton O, Lehto T, Bakker MR, Børja I, Konôpka B, Leski T, Kraigher H, Kuyper TW (2007) Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosyst 141:406–425

    Article  Google Scholar 

  • Deslippe JR, Hartmann M, Mohn WW, Simard SW (2011) Long-term experimental manipulation of climate alters the ectomycorrhizal community of Betula nana in Arctic tundra. Glob Chang Biol 17:1625–1636

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  PubMed  CAS  Google Scholar 

  • Domisch T, Finér L, Lehto T, Smolander A (2002) Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings. Plant Soil 239:173–185

    Article  CAS  Google Scholar 

  • Eiriksdottir ES, Gislason SR, Oelkers EH (2011) Does runoff or temperature control chemical weathering rates? Appl Geochem 26:S346–S349

    Article  CAS  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. In: Begon M, Fitter AH (eds) Adv Ecol Res 27. Academic Press, pp 1–60

  • Forbes PJ, Black KE, Hooker JE (1997) Temperature-induced alteration to root longevity in Lolium perenne. Plant Soil 190:87–90

    Article  CAS  Google Scholar 

  • Fransson PMA, Taylor AFS, Finlay RD (2000) Effects of continuous optimal fertilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Physiol 20:599–606

    Article  PubMed  Google Scholar 

  • Frey SD, Drijber R, Smith H, Melillo JM (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907

    Article  CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods 14:151–163

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  Google Scholar 

  • Gill RA, Burke IC (2002) Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe. Plant Soil 241:233–242

    Article  CAS  Google Scholar 

  • Hagedorn F, Martin M, Rixen C, Rusch S, Bebi P, Zürcher A, Siegwolf RTW, Wipf S, Escape C, Roy J, Hättenschwiler S (2010) Short-term responses of ecosystem carbon fluxes to experimental soil warming at the Swiss alpine treeline. Biogeochemistry 97:7–19

    Article  CAS  Google Scholar 

  • Helmisaari H, Hallbäcken L (1999) Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. For Ecol Manag 119:99–110

    Article  Google Scholar 

  • Helmisaari H, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol 27:1493–1504

    Article  PubMed  CAS  Google Scholar 

  • Helmisaari H, Ostonen I, Lõhmus K, Derome J, Lindroos A, Merila P, Nöjd P (2009a) Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Tree Physiol 29:445–456

    Article  PubMed  CAS  Google Scholar 

  • Helmisaari H, Saarsalmi A, Kukkola M (2009b) Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland. Plant Soil 314:121–132

    Article  CAS  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) Patterns of fine root mortality in two sugar maple forests. Nature 361:59–61

    Article  Google Scholar 

  • Högberg P (1997) Tansley Review No. 95 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Högberg P, Högbom L, Schinkel H, Högberg M, Johannisson C, Wallmark H (1996) 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108:207–214

    Google Scholar 

  • Holopainen T, Heinonen-Tanski H (1993) Effects of different nitrogen sources on the growth of Scots pine seedlings and the ultrastructure and development of their mycorrhizae. Can J For Res 23:362–372

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Cambridge University Press. Cambridge, United Kingdom and New York, USA

  • Jarvis PG, Linder S (2000) Botany: Constraints to growth of boreal forests. Nature 405:904–905

    Article  PubMed  CAS  Google Scholar 

  • Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL (2006) Elevated CO2 and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. New Phytol 170:345–356

    Article  PubMed  CAS  Google Scholar 

  • Kårén O, Nylund J (1997) Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Can J Bot 75:1628–1642

    Article  Google Scholar 

  • Kaspar TC, Bland WL (1992) Soil temperature and root growth. Soil Sci 154:290–299

    Article  Google Scholar 

  • Kazda M (1990) Indications of unbalanced nitrogen nutrition of Norway spruce stands. Plant Soil 128:97–101

    Article  CAS  Google Scholar 

  • Kernaghan G (2005) Mycorrhizal diversity: Cause and effect? Pedobiologia 49:511–520

    Article  Google Scholar 

  • King JS, Pregitzer KS, Zak DR (1999) Clonal variation in above- and below-ground growth responses of Populus tremuloides Michaux: Influence of soil warming and nutrient availability. Plant Soil 217:119–130

    Article  Google Scholar 

  • Kinoshita A, Satomura T, Hashimoto Y, Horikoshi T (2007) Fungal content of ectomycorrhizal tips: comparison among 13 tree species. Mycoscience 48:160–168

    Article  Google Scholar 

  • Kleja D, Svensson M, Majdi H, Jansson P, Langvall O, Bergkvist B, Johansson M, Weslien P, Truusb L, Lindroth A, Ågren GI (2008) Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Biogeochemistry 89:7–25

    Article  Google Scholar 

  • Kukkola M, Saramäki J (1983) Growth response in repeatedly fertilized pine and spruce stands on mineral soils. Commun Inst For Fenn 144:1–55

    Google Scholar 

  • Lahti M, Aphalo PJ, Finér L, Ryyppö A, Lehto T, Mannerkoski H (2005) Effects of soil temperature on shoot and root growth and nutrient uptake of 5-year-old Norway spruce seedlings. Tree Physiol 25:115–122

    Article  PubMed  CAS  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90

    Article  PubMed  Google Scholar 

  • Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56

    Article  CAS  Google Scholar 

  • Linder S (1995) Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce. Ecol Bull (Copenhagen) 44:178–190

    CAS  Google Scholar 

  • Linder S, Flower-Ellis JGK (1992) Environmental and physiological constraints to forest yield. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of Forest Ecosystems to Environmental Changes. Elsevier Applied Science, London, pp 149–164

    Chapter  Google Scholar 

  • Lõhmus K, Oja T, Lasn R (1989) Specific root area: A soil characteristic. Plant Soil 119:245–249

    Article  Google Scholar 

  • Lõhmus K, Truu M, Truu J, Ostonen I, Kaar E, Vares A, Uri V, Alama S, Kanal A (2006) Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in Alder stands on forest, abandoned agricultural, and oil-shale mining areas. Plant Soil 283:1–10

    Article  CAS  Google Scholar 

  • Lükewille A, Wright RF (1997) Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern Norway. Glob Chang Biol 3:13–21

    Article  Google Scholar 

  • MacDonald NW, Zak DR, Pregitzer KS (1995) Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Sci Soc Am J 59:233–240

    Article  CAS  Google Scholar 

  • Majdi H (2001) Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. Tree Physiol 21:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Majdi H, Andersson P (2005) Fine root production and turnover in a Norway spruce stand in Northern Sweden: Effects of nitrogen and water manipulation. Ecosystems 8:191–199

    Article  CAS  Google Scholar 

  • Majdi H, Öhrvik J (2004) Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Glob Chang Biol 10:182–188

    Article  Google Scholar 

  • Makkonen K, Helmisaari H (2001) Fine root biomass and production in Scots pine stands in relation to stand age. Tree Physiol 21:193–198

    Article  PubMed  CAS  Google Scholar 

  • Marklund LG (1987) Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Department of Forest Survey, SLU. Swedish University of Agricultural Sciences, Uppsala. Report 43

  • McMichael BL, Burke JJ (1998) Soil temperature and root growth. Hortscience 33:947–951

    Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk KM, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176

    Article  PubMed  CAS  Google Scholar 

  • Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhouj Y, Tang J (2011) Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci U S A 108:9508–9512

    Article  PubMed  CAS  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  • Nilsson LO, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416

    Article  Google Scholar 

  • Olsson P, Linder S, Giesler R, Högberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Chang Biol 11:1745–1753

    Article  Google Scholar 

  • Ostonen I, Lõhmus K (2003) Proportion of fungal mantle, cortex and stele of ectomycorrhizas in Picea abies (L.) Karst. in different soils and site conditions. Plant Soil 257:435–442

    Article  CAS  Google Scholar 

  • Ostonen I, Lõhmus K, Lasn R (1999) The role of soil conditions in fine root ecomorphology in Norway spruce (Picea abies (L.) Karst.). Plant Soil 208:283–292

    Article  CAS  Google Scholar 

  • Ostonen I, Lõhmus K, Pajuste K (2005) Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods. For Ecol Manag 212:264–277

    Article  Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe DB, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007a) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

    Article  Google Scholar 

  • Ostonen I, Lõhmus K, Helmisaari H, Truu J, Meel S (2007b) Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol 27:1627–1634

    Article  PubMed  Google Scholar 

  • Ostonen I, Helmisaari H, Borken W, Tedersoo L, Kukumägi M, Bahram M, Lindroos A, Nöjd P, Uri V, Merilä P, Asi E, Lõhmus K (2011) Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob Chang Biol 17:3620–3632

    Article  Google Scholar 

  • Parsons AN, Welker JM, Wookey PA, Press MC, Callaghan TV, Lee JA (1994) Growth responses of four sub-Arctic dwarf shrubs to simulated environmental change. J Ecol 82:307–318

    Article  Google Scholar 

  • Persson H (1980) Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in Central Sweden. Oikos 34:77–87

    Article  Google Scholar 

  • Persson H (2000) Adaptive tactics and characteristics of tree fine roots. In: Stokes A (ed) The supporting roots of trees and woody plants: form, function, and physiology. Kluwer, Dordrecht, pp 337–346

    Chapter  Google Scholar 

  • Persson H, Ahlström K (1990) The effects of forest liming on fertilization on fine-root growth. Water Air Soil Pollut 54:365–375

    CAS  Google Scholar 

  • Persson H, Ahlström K (2002) Fine-root response to nitrogen supply in nitrogen manipulated Norway spruce catchment areas. For Ecol Manag 168:29–41

    Article  Google Scholar 

  • Persson H, Stadenberg I (2009) Spatial distribution of fine-roots in boreal forests in eastern Sweden. Plant Soil 318:1–14

    Article  CAS  Google Scholar 

  • Persson H, Stadenberg I (2010) Fine root dynamics in a Norway spruce forest (Picea abies (L.) Karst) in eastern Sweden. Plant Soil 330:329–344

    Article  CAS  Google Scholar 

  • Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994) Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol Appl 4:617–625

    Article  Google Scholar 

  • Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125:575–580

    Article  Google Scholar 

  • Pregitzer KS, King JS, Burton AJ, Brown SE (2000) Responses of tree fine roots to temperature. New Phytol 147:105–115

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Rustad LE, Fernandez IJ (1998) Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce–fir forest soil in Maine, USA. Glob Chang Biol 4:597–605

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Rygiewicz PT, Martin KJ, Tuininga AR (2000) Morphotype community structure of ectomycorrhizas on Douglas fir (Pseudotsuga menziesii Mirb. Franco) seedlings grown under elevated atmospheric CO2 and temperature. Oecologia 124:299–308

    Article  Google Scholar 

  • Salmanowicz B, Nylund J (1988) High performance liquid chromatography determination of ergosterol as a measure of ectomycorrhiza infection in Scots pine. Eur J For Pathol 18:291–298

    Article  CAS  Google Scholar 

  • Schindlbacher A, Zechmeister-Boltenstern S, Jandl R (2009) Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? Glob Chang Biol 15:901–913

    Article  Google Scholar 

  • Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S (2011) Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem 43:1417–1425

    Article  PubMed  CAS  Google Scholar 

  • Staddon PL, Heinemeyer A, Fitter AH (2002) Mycorrhizas and global environmental change: research at different scales. Plant Soil 244:253–261

    Article  CAS  Google Scholar 

  • Staddon PL, Gregersen R, Jakobsen I (2004) The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Glob Chang Biol 10:1909–1921

    Article  Google Scholar 

  • Strömgren M (2001) Soil-surface CO2 flux and growth in a boreal Norway spruce stand—effects of soil warming and nutrition. Dissertation, Department for Production Ecology, Swedish University of Agricultural Sciences (SLU)

  • Strömgren M, Linder S (2002) Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand. Glob Chang Biol 8:1194–1204

    Article  Google Scholar 

  • Tamminen P, Starr M (1994) Bulk density of forested mineral soils. Silva Fenn 28:53–60

    Google Scholar 

  • Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ectomyccorhizal communities of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) along a north–south transect in Europe. In: Schulze E (ed) Ecological studies, vol. 142. Carbon and nitrogen cycling in European forest ecosystems. Springer, Berlin, pp 343–365

    Google Scholar 

  • Treseder KK, Turner KM, Mack MC (2007) Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Glob Chang Biol 13:78–88

    Article  Google Scholar 

  • Trocha LK, Mucha J, Eissenstat DM, Reich PB, Oleksyn J (2010) Ectomycorrhizal identity determines respiration and concentrations of nitrogen and non-structural carbohydrates in root tips: a test using Pinus sylvestris and Quercus robur saplings. Tree Physiol 30:648–654

    Article  PubMed  CAS  Google Scholar 

  • Tryon PR, Chapin FS III (1983) Temperature control over root growth and root biomass in taiga forest trees. Can J For Res 13:827–833

    Article  Google Scholar 

  • Van Cleve K, Oechel WC, Hom JL (1990) Response of Black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Can J For Res 20:1530–1535

    Article  Google Scholar 

  • van der Heijden EW, Kuyper TW (2003) Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement. Oikos 103:668–680

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–830

    Article  PubMed  Google Scholar 

  • Vapaavuori EM, Rikala R, Ryyppö A (1992) Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiol 10:217–230

    Article  PubMed  Google Scholar 

  • Wallander H (2006) External mycorrhizal mycelia—the importance of quantification in natural ecosystems. New Phytol 171:240–242

    Article  PubMed  Google Scholar 

  • Wallander H, Nylund J (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytol 120:495–503

    Article  CAS  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760

    Article  CAS  Google Scholar 

  • Wallander H, Ekblad A, Bergh J (2011) Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. For Ecol Manag 262:999–1007

    Article  Google Scholar 

  • Welker JM, Fahnestock JT, Jones MH (2000) Annual CO2 flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth. Clim Change 44:139–150

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This experiment formed a part of the projects “The effect of long-term soil warming on soil carbon balance in a boreal spruce forest”, funded by the Swedish Research Council Formas and “Long-term effects of soil warming on fine root and mycorrhizal mycelia turnover in boreal forests”, funded by the Maj and Tor Nessling Foundation, Finland. Funding by the Academy of Finland is also acknowledged. Morphological studies were funded by the Estonian Science Foundation grant No 7452, SF0180127s08 of the Ministry of Education and Research of the Republic of Estonia and European Regional Development Fund (Center of Excellence ENVIRON). The authors are grateful to Prof. Sune Linder for providing the facilities for this study, to all at the Flakaliden research site for maintaining the soil warming experiment and for assistance e.g. from Per Olsson in the field work. We thank Juha Kemppainen, Ulla Raatikainen and Pekka Välikangas at the Finnish Forest Research Institute, Salla Office for assistance in sampling and sorting the fine roots and Michael Bailey for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leppälammi-Kujansuu.

Additional information

Responsible Editor: Katharina Pawlowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leppälammi-Kujansuu, J., Ostonen, I., Strömgren, M. et al. Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production. Plant Soil 366, 287–303 (2013). https://doi.org/10.1007/s11104-012-1431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1431-0

Keywords

Navigation