Skip to main content

Advertisement

Log in

Fine Root Growth and Vertical Distribution in Response to Elevated CO2, Warming and Drought in a Mixed Heathland–Grassland

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Belowground plant responses have received much less attention in climate change experiments than aboveground plant responses, thus hampering a holistic understanding of climate change effects on plants and ecosystems. In addition, responses of plant roots to climate change have mostly been studied in single-factor experiments. In a Danish heathland ecosystem, we investigated both individual and combined effects of elevated CO2, warming and drought on fine root length, net production and standing biomass by the use of minirhizotrons, ingrowth cores and soil coring. Warming increased the net root production from ingrowth cores, but decreased fine root number and length in minirhizotrons, whereas there were no significant main effects of drought. Across all treatments and soil depths, CO2 stimulated both the total fine root length (+44%) and the number of roots observed (+39%), with highest relative increase in root length in the deeper soil layers. Our results suggest that under future climate, plants may allocate considerable resources into roots compared to aboveground biomass. Increased carbon (C) allocation to roots may have a great impact on the overall ecosystem C balance and must be considered in modelling of future ecosystem responses to climate change. To provide models with necessary validation data, more studies are needed to investigate if higher C allocation to roots will lead to long-term C storage in more recalcitrant soil C pools or if this potential increase in soil carbon storage may be offset by increased priming activity and turnover rates for soil organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adair EC, Reich PB, Hobbie SE, Knops JM. 2009. Interactive effects of time, CO(2), N, and diversity on total belowground carbon allocation and ecosystem carbon storage in a grassland community. Ecosystems 12:1037–52.

    Article  Google Scholar 

  • Aerts R, Heil GW. 1993. Heath lands. Patterns and processes in a changing environment. Dordrecht: Kluwer Academic Publishers. Geobotany 20:223.

  • Ahrens B, Hansson K, Solly EF, Schrumpf M. 2014. Reconcilable differences: a joint calibration of fine-root turnover times with radiocarbon and minirhizotrons. New Phytol 204:932–42.

    Article  CAS  PubMed  Google Scholar 

  • Albert K, Ro-Poulsen H, Mikkelsen TN, Michelsen A, der Linden Van, Beier C. 2011a. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant, Cell Environ 34:1207–22.

    Article  CAS  Google Scholar 

  • Albert K, Ro-Poulsen H, Mikkelsen TN, Michelsen A, der Linden Van, Beier C. 2011b. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. J Exp Bot 62:4253–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, Van der Linden L. 2011c. Interactive effects of drought, elevated CO(2) and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J Plant Physiol 168:1550–61.

    Article  CAS  PubMed  Google Scholar 

  • Anderson LJ, Derner JD, Polley HW, Gordon WS, Eissenstat DM, Jackson RB. 2010. Root responses along a subambient to elevated CO2 gradient in a C-3-C-4 grassland. Glob Change Biol 16:454–68.

    Article  Google Scholar 

  • Andresen LC, Michelsen A, Ambus P, Beier C. 2010a. Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry 101:27–42.

    Article  Google Scholar 

  • Andresen LC, Michelsen A, Jonasson S, Schmidt IK, Mikkelsen TN, Ambus P, Beier C. 2010b. Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought. Plant Soil 328:381–96.

    Article  CAS  Google Scholar 

  • Arndal M, Merrild M, Michelsen A, Schmidt I, Mikkelsen T, Beier C. 2013. Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant Soil 369:615–29.

    Article  CAS  Google Scholar 

  • Arndal M, Schmidt IK, Kongstad J, Beier C, Michelsen A. 2014. Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 41:1–10.

    Article  CAS  Google Scholar 

  • Arnone JA, Zaller JG, Spehn EM, Niklaus PA, Wells CE, Korner C. 2000. Dymamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol 147:73–85.

    Article  CAS  Google Scholar 

  • Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH. 2010. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob Change Biol 16:1306–16.

    Article  Google Scholar 

  • Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Korner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K. 2012. Precipitation manipulation experiments - challenges and recommendations for the future. Ecol Lett 15:899–911.

    Article  PubMed  Google Scholar 

  • Beier C, Emmett BA, Tietema A, Schmidt IK, Penuelas J, Lang EK, Duce P, de Angelis P, Gorissen A, Estiarte M, de Dato GD, Sowerby A, Kroel-Dulay G, Lellei-Kovacs E, Kull O, Mand P, Petersen H, Gjelstrup P, Spano D. 2009. Carbon and nitrogen balances for six shrublands across Europe. Glob Biogeochem Cycles 23.

  • Carrillo Y, Dijkstra FA, LeCain D, Morgan JA, Blumenthal D, Waldron S, Pendall E. 2014. Disentangling root responses to climate change in a semiarid grassland. Oecologia 175:699–711.

    Article  PubMed  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C. 2002. How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Mommer L, van Ruijven J, de Kroon H, Fischer C, Gessler A, Hildebrandt A, Scherer-Lorenzen M, Wirth C, Weigelt A. 2016. Plant species richness negatively affects root decomposition in grasslands. J Ecol . doi:10.1111/1365-2745.12650.

    Google Scholar 

  • Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA. 2009. Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Glob Change Biol 15:2003–19.

    Article  Google Scholar 

  • Day FP, Schroeder RE, Stover DB, Brown AL, Butnor JR, Dilustro J, Hungate BA, Dijkstra P, Duval BD, Seiler TJ, Drake BG, Hinkle C. 2013. The effects of 11 yr of CO2 enrichment on roots in a Florida scrub-oak ecosystem. New Phytol 200:778–87.

    Article  CAS  PubMed  Google Scholar 

  • Dieleman WI, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen KS, Morgan JA, Volder A, Beier C, Dukes JS, King J, Leuzinger S, Linder S, Luo Y, Oren R, de Angelis P, Tingey D, Hoosbeek MR, Janssens IA. 2012. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob Change Biol 18:2681–93.

    Article  Google Scholar 

  • Edwards EJ, Benham DG, Marland LA, Fitter AH. 2004. Root production is determined by radiation flux in a temperate grassland community. Glob Change Biol 10:209–27.

    Article  Google Scholar 

  • Eissenstat D M, McCormack M L and Du Q. 2013. Global changes and root lifespan. In: Eshel A, Beeckman T, Eds. Plant roots—the hidden half. London: Taylor & Francis Group. pp. 21-1-27-13.

  • Ferguson SD, Nowak RS. 2011. Transitory effects of elevated atmospheric CO(2) on fine root dynamics in an arid ecosystem do not increase long-term soil carbon input from fine root litter. New Phytol 190:953–67.

    Article  PubMed  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci USA 104:14014–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitter AH. 1982. Morphometric analysis of root systems: application of the technique and influence of soil fertility on root system development in two herbaceous species. Plant Cell Environ 5:313–22.

    Google Scholar 

  • Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P. 1999. Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. Oecologia 120:575–81.

    Article  CAS  PubMed  Google Scholar 

  • Garten CT, Classen AT, Norby RJ. 2009. Soil moisture surpasses elevated CO(2) and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment. Plant Soil 319:85–94.

    Article  CAS  Google Scholar 

  • Gill RA, Jackson RB. 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31.

    Article  Google Scholar 

  • Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB. 2002. Nonlinear grassland responses to past and future atmospheric CO2. Nature 417:279–82.

    Article  CAS  PubMed  Google Scholar 

  • Higgins PAT, Jackson RB, Des Rosiers JM, Field CB. 2002. Root production and demography in a california annual grassland under elevated atmospheric carbon dioxide. Glob Change Biol 8:841–50.

    Article  Google Scholar 

  • IPCC. 2013. the physical science basis. In: Stocker TF, Plattner GK, and M. Tignor, Eds. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. pp. 1–1535.

  • Iversen CM. 2010. Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186:346–57. doi:10.1111/j.1469-8137.2009.03122.x.

    Article  PubMed  Google Scholar 

  • Iversen CM, Ledford J, Norby RJ. 2008. CO(2) enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytol 179:837–47.

    Article  CAS  PubMed  Google Scholar 

  • Iversen CM, Murphy MT, Allen MF, Childs J, Eissenstat DM, Lilleskov EA, Sarjala TM, Sloan VL, Sullivan PF. 2012. Advancing the use of minirhizotrons in wetlands. Plant Soil 352:23–39.

    Article  CAS  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci 94:7362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobbagy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–36.

    Article  Google Scholar 

  • Johnson MG, Tingey DT, Phillips DL, Storm MJ. 2001. Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–89.

    Article  PubMed  Google Scholar 

  • Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL. 2006. Elevated CO2 and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. New Phytol 170:345–56.

    Article  CAS  PubMed  Google Scholar 

  • Kongstad J, Schmidt IK, Riis-Nielsen T, Beier C, Arndal MF, Mikkelsen TN. 2012. High resilience in heathland plants to changes in temperature, drought and CO2 in combination: results from the CLIMAITE experiment. Ecosystems 15(2):269–83.

    Article  CAS  Google Scholar 

  • Kramer C, Trumbore S, Froberg M, Dozal LMC, Zhang DC, Xu XM, Santos GM, Hanson PJ. 2010. Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol Biochem 42:1028–37.

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Hill PW, Jones DL. 2007. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305.

    Article  CAS  Google Scholar 

  • Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, Arndal MF, Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, Van der Linden L, Maraldo K, Michelsen A, Mikkelsen TN, Pilegaard K, Prieme A, Ro-Poulsen H, Schmidt IK, Selsted MB, Stevnbak K. 2011. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Glob Change Biol 17:1884–99.

    Article  Google Scholar 

  • LeCain DR, Morgan JA, Milchunas DG, Mosier AR, Nelson JA, Smith DP. 2006. Root biomass of individual species, and root size characteristics after five years of CO2 enrichment on native shortgrass steppe. Plant Soil 279:219–28.

    Article  CAS  Google Scholar 

  • Leuzinger S, Luo YQ, Beier C, Dieleman W, Vicca S, Korner C. 2011. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 26:236–41.

    Article  PubMed  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–9.

    Article  Google Scholar 

  • Madhu M, Hatfield J. 2013. Dynamics of Plant Root Growth under Increased Atmospheric Carbon Dioxide. Agron J 105:657–69.

    Article  CAS  Google Scholar 

  • Mikkelsen TN, Beier C, Jonasson S, Holmstrup M, Schmidt IK, Ambus P, Pilegaard K, Michelsen A, Albert K, Andresen LC, Arndal MF, Bruun N, Christensen S, Danbaek S, Gundersen P, Jorgensen P, Linden LG, Kongstad J, Maraldo K, Prieme A, Riis-Nielsen T, Ro-Poulsen H, Stevnbak K, Selsted MB, Sorensen P, Larsen KS, Carter MS, Ibrom A, Martinussen T, Miglietta F, Sverdrup H. 2008. Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project. Funct Ecol 22:185–95.

    Google Scholar 

  • Milchunas DG, Morgan JA, Mosier AR, LeCain DR. 2005. Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology. Glob Change Biol 11:1837–55.

    Article  Google Scholar 

  • Milchunas DG. 2009. Estimating root production: comparison of 11 methods in shortgrass steppe and review of biases. Ecosystems 12:1381–402.

    Article  CAS  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96.

    Article  Google Scholar 

  • Mommer L, Padilla FM, van Ruijven J, de Caluwe H, Smit-Tiekstra A, Berendse F, de Kroon H. 2015. Diversity effects on root length production and loss in an experimental grassland community. Funct Ecol 29(12):1560–68. doi:10.1111/1365-2435.12466.

    Article  Google Scholar 

  • Naudts K, Van den Berge J, Janssens IA, Nijs I, Ceulemans R. 2013. Combined effects of warming and elevated CO2 on the impact of drought in grassland species. Plant Soil 369:497–507.

    Article  CAS  Google Scholar 

  • Nelson JA, Morgan JA, LeCain DR, Mosier A, Milchunas DG, Parton BA. 2004. Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado. Plant Soil 259:169–79.

    Article  CAS  Google Scholar 

  • Newingham BA, Vanier CH, Charlet TN, Ogle K, Smith SD, Nowak RS. 2013. No cumulative effect of 10 years of elevated [CO2] on perennial plant biomass components in the Mojave Desert. Glob Change Biol 19:2168–81.

    Article  Google Scholar 

  • Nielsen PL, Andresen LC, Michelsen A, Schmidt IK, Kongstad J. 2009. Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants. Appl Soil Ecol 42:279–87.

    Article  Google Scholar 

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG. 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci USA 101:9689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostle NJ, Levy PE, Evans CD, Smith P. 2009. UK land use and soil carbon sequestration. Land Use Policy 26:S274–83.

    Article  Google Scholar 

  • Pilon R, Picon-Cochard C, Bloor JMG, Revaillot S, Kuhn E, Falcimagne R, Balandier P, Soussana JF. 2013. Grassland root demography responses to multiple climate change drivers depend on root morphology. Plant Soil 364:395–408.

    Article  CAS  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves, stems and roots: meta-analysis of interspecific variation and environmental control. New Phytol 193(1):30–50.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Finzi AC, Jackson RB, Matamala R, Rogers HH, Oren R. 2008. Fine root dynamics in a loblolly pine forest are influenced by free-air-CO(2)-enrichment: a six-year-minirhizotron study. Glob Change Biol 14:588–602.

    Article  Google Scholar 

  • R Development Core Team. 2011. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0, http://www.R-project.org/.

  • Reid JB, Renquist AR. 1997. Enhanced root production as a feed-forward response to soil water deficit in field-grown tomatoes. Aust J Plant Physiol 24:685–92.

    Article  Google Scholar 

  • Reyes-Fox M, Steltzer H, Trlica MJ, McMaster GS, Andales AA, LeCain DR, Morgan JA. 2014. Elevated CO2 further lengthens growing season under warming conditions. Nature 510:259–62.

    Article  CAS  PubMed  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–62.

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc. 2003. SAS user’s guide. Statistical Analysis System. Cary: SAS Institute Inc.

    Google Scholar 

  • Selsted MB, Linden LG, Ibrom A, Michelsen A, Larsen KS, Kongstad J, Mikkelsen TN, Pilegaard K, Beier C, Ambus P. 2012. Soil respiration is stimulated by elevated CO2 and reduced by summer drought: Three years of measurements in a multifactor ecosystem manipulation experiment in a temperate heathland (CLIMAITE). Glob Change Biol 18:1216–30.

    Article  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB. 2002. Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–90.

    Article  CAS  PubMed  Google Scholar 

  • Steinaker DF, Wilson SD. 2005. Belowground litter contributions to nitrogen cycling at a northern grassland-forest boundary. Ecology 86:2825–33.

    Article  Google Scholar 

  • Tefs C, Gleixner G. 2012. Importance of root derived carbon for soil organic matter storage in a temperate old-growth beech forest - Evidence from C, N and C-14 content. For Ecol Manage 263:131–7.

    Article  Google Scholar 

  • Van Der Krift TAJ, Berendse F. 2002. Root life spans of four grass species from habitats differing in nutrient availability. Funct Ecol 16(2):198–203.

    Article  Google Scholar 

  • Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM. 2008. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). Am J Bot 95:1506–14.

    Article  PubMed  Google Scholar 

  • Volder A, Gifford RM, Evans JR. 2007. Effects of elevated atmospheric CO2, cutting frequency, and differential day/night atmospheric warming on root growth and turnover of Phalaris swards. Glob Change Biol 13:1040–52.

    Article  Google Scholar 

  • Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG. 2004. CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytol 162:437–46.

    Article  Google Scholar 

  • Wang Z, Ding L, Wang J, Zuo X, Yao S, Feng J. 2016. Effects of root diameter, branch order, root depth, season and warming on root longevity in an alpine meadow. Ecol Res 31(5):739–47.

    Article  Google Scholar 

  • Wilson SD. 2014. Below-ground opportunities in vegetation science. J Veg Sci 25:1117–25.

    Article  Google Scholar 

  • Wu YB, Zhang J, Deng YC, Wu J, Wang SP, Tang YH, Cui XY. 2014. Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecol 215:1057–66.

    Article  Google Scholar 

  • Wu Z, Dijkstra P, Koch GW, Penuelas J, Hungate BA. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Change Biol 17:927–42.

    Article  Google Scholar 

  • Zavalloni C, Gielen B, Lemmens CMHM, De Boeck HJ, Blasi S, Van den Bergh S, Nijs I, Ceulemans R. 2008. Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought? Plant Soil 308:119–30.

    Article  CAS  Google Scholar 

  • Zhou YM, Tang JW, Melillo JM, Butler S, Mohan JE. 2011. Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiol 31:707–17.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank The CLIMAITE project (CLIMate change effects on biological processes In Terrestrial Ecosystems), funded by the Villum Kann Rasmussen foundation and further supported by Air Liquide Denmark A/S, DONG Energy and the participating institutions and the INCREASE network funded by the EC FP7-Infrastructure-2008-1 Grant Agreement 227628. The authors wish to thank Nina Thomsen, Preben Jørgensen and Svend Danbæk for keeping the CLIMAITE facilities running and constantly ready for field work. David Eissenstat is thanked for his guidance and help during image analysis at Penn State University, and Victoria Sloan is thanked for her review of the first draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Arndal.

Additional information

Authors contributions CB, IKS, MFA conceived and designed the study, MFA performed research, MFA, KSL and AT analysed the data, MFA wrote the manuscript with input and editorial advice by all other authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arndal, M.F., Tolver, A., Larsen, K.S. et al. Fine Root Growth and Vertical Distribution in Response to Elevated CO2, Warming and Drought in a Mixed Heathland–Grassland. Ecosystems 21, 15–30 (2018). https://doi.org/10.1007/s10021-017-0131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0131-2

Keywords

Navigation