Skip to main content
Log in

Peanut as a potential crop for bioenergy production via Cd-phytoextraction: A life-cycle pot experiment

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The current study aimed to assess the potential of peanut (Arachis hypogaea L.) for bioenergy production via phytoextraction in cadmium (Cd) -contaminated soils and screen appropriate cultivars for this approach.

Methods

A life-cycle pot experiment was conducted to determine the biomass, seed yield, oil content and Cd accumulation of seven peanut cultivars under Cd concentration gradients of 0, 2, and 4 mg kg−1.

Results

Peanut exhibits genotypic variations in Cd tolerance, seed production, oil content, and Cd accumulation. Exposure of plants to 2 and 4 mg kg−1 Cd did not inhibit shoot biomass, seed yield, and oil content for most of the cultivars tested. There are large amounts of Cd accumulated in the shoots. Although the seed Cd concentration of peanut was relatively high, the Cd concentration in seed oils was very low (0.04-0.08 mg kg−1). Among the cultivars, Qishan 208 showed significant Cd tolerance, high shoot biomass, high pod and seed yield, high seed oil content, considerable shoot Cd concentration, and the largest translocation factor and total Cd in shoots.

Conclusions

The cultivation of peanut in Cd-contaminated farmland was confirmed to be feasible for bioenergy production via phytoextraction, and Qishan 208 is a good candidate for this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the holy grail: a further step in understanding metal hyperaccumulation? New Phytol 155:1–4

    Article  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. In: Farago ME (ed) Plants and the chemical elements: biochemistry, uptake, tolerance and toxicity. Wiley-VCH Verlag GmbH, Weinheim, pp 87–105

    Google Scholar 

  • Campbell JE, Lobell DB, Genova RC, Field CB (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci Technol 42:5791–5794

    Article  PubMed  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE, Drucker H (1978) Nickel in plants: II. Distribution and chemical form in soybean plants. Plant Physiol 62:566–570

    Article  PubMed  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1981) Cadmium distribution and chemical fate in soybean plants. Plant Physiol 68:835–839

    Article  PubMed  CAS  Google Scholar 

  • Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 10:192–198

    Article  CAS  Google Scholar 

  • CODEX (2006) Report of the 38th session of the CODEX Committee on Food Additives and Contaminants Codex Alimentarius Commission, ALINORM 06/29/12, 1-12

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energ Convers Manage 50:14–34

    Article  CAS  Google Scholar 

  • Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144:77–83

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40

    Article  PubMed  Google Scholar 

  • Kaya C, Hamamci C, Baysal A, Akba O, Erdogan S, Saydut A (2009) Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renew Energ 34:1257–1260

    Article  CAS  Google Scholar 

  • Koopmans GF, Römkens P, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156:905–914

    Article  PubMed  CAS  Google Scholar 

  • Li P, Wang X, Allinson G, Li X, Xiong X (2009) Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. J Hazard Mater 161:516–521

    Article  PubMed  CAS  Google Scholar 

  • Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crop Prod 16:33–42

    Article  CAS  Google Scholar 

  • Liu W, Zhou Q, An J, Sun Y, Liu R (2010) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173:737–743

    Article  PubMed  CAS  Google Scholar 

  • Liu CF, Li YH, Shi GR (2012) Utilize heavy metal-contaminated farmland to develop bioenergy. Adv Mater Res 414:254–261

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin MJ, Bell MJ, Wright GC, Cozens GD (2000) Uptake and partitioning of cadmium by cultivars of peanut (Arachis hypogaea L.). Plant Soil 222:51–58

    Article  CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, Thewys T, Tack FMG (2011) The use of bio-energy crops (Zea mays) for 'phytoattenuation' of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    Article  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Peuke AD, Rennenberg H (2005) Phytoremediation. EMBO Rep 6:497–501

    Article  PubMed  CAS  Google Scholar 

  • Pietrini F, Zacchini M, Iori V, Pietrosanti L, Bianconi D, Massacci A (2010) Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int J Phytorem 12:105–120

    Article  CAS  Google Scholar 

  • Saito S (2010) Role of nuclear energy to a future society of shortage of energy resources and global warming. J Nucl Mater 398:1–9

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561

    Article  PubMed  CAS  Google Scholar 

  • Shi G, Cai Q (2010) Zinc tolerance and accumulation in eight oil crops. J Plant Nutr 33:982–997

    Article  CAS  Google Scholar 

  • Shi G, Liu C, Cui M, Ma Y, Cai Q (2011) Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl Biochem Biotechnol. doi:10.1007/s12010-12011 -19382-12010

  • Wang S, Wang Y, Zhang H (2007) Effects of cadmium stress on peanut seed quality and related response mechanisms. Chin J Ecol 26:1761–1765

    CAS  Google Scholar 

  • Wang MY, Chen AK, Wong MH, Qiu RL, Cheng H, Ye ZH (2011) Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ Pollut 159:1730–1736

    Article  PubMed  CAS  Google Scholar 

  • Zhang JB, Huang WN (2000) Advances on physiological and ecological effects of cadmium on plants. Acta Ecol Sin 20:514–523

    Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (No. 31171464) and the Anhui Provincial Natural Science Foundation (No. 11040606 M87) are gratefully acknowledged for their financial support. We would like to acknowledge the two anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangrong Shi.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, G., Li, F., Lin, J. et al. Peanut as a potential crop for bioenergy production via Cd-phytoextraction: A life-cycle pot experiment. Plant Soil 365, 337–345 (2013). https://doi.org/10.1007/s11104-012-1394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1394-1

Keywords

Navigation