Skip to main content

Advertisement

Log in

Three-season rotation of chicory–tobacco–peanut with high biomass and bioconcentration factors effectively remediates cadmium-contaminated farmland

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Traditional phytoremediation is one approach to remediate heavy metal pollution. In developing countries, the key factor in promoting practical application of phytoremediation in polluted soils is selecting suitable plants that are tolerant to heavy metals and also produce products with economic value. Therefore, a field experiment was conducted with a three-season chicory–tobacco–peanut rotation to determine effects on remediation of cadmium (Cd)-contaminated farmland in China. All crops had strong Cd accumulation capacity, with bioconcentration factors of 6.61 to 11.97 in chicory, 3.85 to 21.61 in tobacco, and 1.36 to 7.0 in peanut. Yield of total dry biomass reached 32.4 t ha−1, and the Cd phytoextraction efficiency was 10.3% per year. Aboveground tissues of the three crops accounted for 83.9 to 91.2% of total biomass in the rotation experiment. Cd content in peanut grain and oil met the National Food Safety Standard of China (0.5 mg kg−1, GB 2762–2017) and the Food Contaminant Limit of the European Union (0.1 mg kg−1, 18,812,006). Therefore, in addition to phytoremediation of Cd-contaminated soils, the chicory–tobacco–peanut rotation system can also produce economic benefits for local farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or used during the study are available from the corresponding author by request.

References

  • Abe T, Fukami M, Ogasawara M (2008) Cadmium accumulation in the shoots and roots of 93 weed species. Soil Sci Plant Nutr 54:566–573

    Article  CAS  Google Scholar 

  • Ahmadi Doabi S, Karami M, Afyuni M (2019) Heavy metal pollution assessment in agricultural soils of Kermanshah province, Iran. Environ Earth Sci 78:58–101

    Article  CAS  Google Scholar 

  • Angelova V, Ivanova R, Ivanov K (2011) Heavy metal accumulation and distribution in oil crops. Commun Soil Sci Plan 35:2551–2566

    Article  Google Scholar 

  • Cappa JJ, Pilon-Smits EAH (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275

    Article  CAS  Google Scholar 

  • Cheng Q, Huang Q, Khan S, Liu Y, Liao Z, Li G, Ok YS (2016) Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions. Ecol Eng 87:240–245

    Article  Google Scholar 

  • Crush JR, Ouyang L, Cousins GR (2018) Variation in cadmium concentrations in shoots of chicory (Cichorium intybus L.). New Zeal J Agr Res 62:495–503

    Article  CAS  Google Scholar 

  • Du S, Lu Q, Liu L, Wang Y, Li J (2022) Rhodococcus qingshengii facilitates the phytoextraction of Zn, Cd, Ni, and Pb from soils by Sedum alfredii Hance. J Hazard Mater 424:127638

    Article  CAS  Google Scholar 

  • Fei L, Xu P, Dong Q, Mo Q, Wang Z (2018) Young leaf protection from cadmium accumulation and regulation of nitrilotriacetic acid in tall fescue (Festuca arundinacea) and Kentucky bluegrass (Poa pratensis). Chemosphere 212:124–132

    Article  CAS  Google Scholar 

  • Feng J, Lin Y, Yang Y, Shen Q, Huang J, Wang S, Zhu X, Li Z (2018) Tolerance and bioaccumulation of Cd and Cu in Sesuvium portulacastrum. Ecotoxicol Environ Saf 147:306–312

    Article  CAS  Google Scholar 

  • Goswami S, Das S (2015) A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. Int J Phytoremediat 17:583–588

    Article  CAS  Google Scholar 

  • Gusiatin ZM, Kulikowska D, Klik B (2017) Suitability of humic substances recovered from sewage sludge to remedy soils from a former As mining area – a novel approach. J Hazard Mater 338:160–166

    Article  CAS  Google Scholar 

  • Ha TM (2014) Production efficiency and quality of mustard greens (Brassica juncea (L.) Czern) cultivated according to the Vietnamese good agricultural practice (VietGAP) guideline in Thai Nguyen City. Asian J Agric Food Sci 2(04).

  • Han R, Dai H, Zhan J, Wei S (2019) Clean extracts from accumulator efficiently improved Solanum nigrum L. accumulating Cd and Pb in soil. J Clean Prod 239:118055

    Article  CAS  Google Scholar 

  • Jamal A, Delavar MA, Naderi A, Nourieh N, Medi B, Mahvi AH (2019) Distribution and health risk assessment of heavy metals in soil surrounding a lead and zinc smelting plant in Zanjan, Iran. Hum Ecol Risk Assess 25:1018–1033

    Article  CAS  Google Scholar 

  • Jia H, Yin Z, Xuan D, Lian W, Han D, Zhu Z, Li C, Li C, Song Z (2022) Mutation of NtNRAMP3 improves cadmium tolerance and its accumulation in tobacco leaves by regulating the subcellular distribution of cadmium. J Hazard Mater 432:128701

    Article  CAS  Google Scholar 

  • Lei B, Li-Chan ECY, Oomah BD, Mazza G (2003) Distribution of cadmium-binding components in flax (Linum usitatissimum L.) seed. J Agric Food Chem 51:814–821

    Article  CAS  Google Scholar 

  • Li Y, Xie T, Zha Y, Du W, Yin Y, Guo H (2021) Urea-enhanced phytoremediation of cadmium with willow in pyrene and cadmium contaminated soil. J Hazard Mater 405:124257

    Article  CAS  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853

    Article  CAS  Google Scholar 

  • Liu H, Wang H, Zhang Y, Wang H, Yang J, Liu J, Shi Y (2019) Comparison of heavy metal accumulation and cadmium phytoextraction rates among ten leading tobacco (Nicotiana tabacum L.) cultivars in China. Int J Phytoremediat 21:699–706

    Article  CAS  Google Scholar 

  • Liu K, Yu F, Chen M, Zhou Z, Chen C, Li MS, Zhu J (2016) A newly found manganese hyperaccumulator-Polygonum lapathifolium Linn. Int J Phytoremediat 18:348–353

    Article  CAS  Google Scholar 

  • Lugon-Moulin N, Martin F, Krauss MR, Ramey PB, Rossi L (2006) Cadmium concentration in tobacco (Nicotiana tabacum L.) from different countries and its relationship with other elements. Chemosphere 63:1074–1086

    Article  CAS  Google Scholar 

  • Lugon-Moulin N, Zhang M, Gadani F, Rossi L, Wagner GJJAiA (2004) Critical review of the scienceand options for reducing cadmium in tobacco (Nicotiana tabacum L. ) and other plants. Adv Agron 83:111–180

    Article  CAS  Google Scholar 

  • Luo J, He W, Qi S, Wu J, Gu XS (2020) A novel phytoremediation method assisted by magnetized water to decontaminate soil Cd based on harvesting senescent and dead leaves of Festuca arundinacea. J Hazard Mater 383:121115

    Article  CAS  Google Scholar 

  • Marchiol L, Fellet G, Boscutti F, Montella C, Mozzi R, Guarino C (2013) Gentle remediation at the former “Pertusola Sud” zinc smelter: evaluation of native species for phytoremediation purposes. Ecol Eng 53:343–353

    Article  Google Scholar 

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Bioch 45:379–387

    Article  CAS  Google Scholar 

  • Page K, Harbottle MJ, Cleall PJ, Hutchings TR (2014) Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate. Sci Total Environ 487:260–271

    Article  CAS  Google Scholar 

  • Sangsuwan P, Prapagdee B (2021) Cadmium phytoremediation performance of two species of Chlorophytum and enhancing their potentials by cadmium-resistant bacteria. Environ Technol Inno 21:101311

    Article  CAS  Google Scholar 

  • Shah V, Daverey A (2021) Effects of sophorolipids augmentation on the plant growth and phytoremediation of heavy metal contaminated soil. J Clean Prod 280:124406

    Article  CAS  Google Scholar 

  • Sharma N, Barion G, Shrestha I, Ebinezer LB, Trentin AR, Vamerali T, Mezzalira G, Masi A, Ghisi R (2020) Accumulation and effects of perfluoroalkyl substances in three hydroponically grown Salix L. species. Ecotoxicol Environ Saf 191:110150

    Article  CAS  Google Scholar 

  • Shi G, Su G, Lu Z, Liu C, Wang X (2014) Relationship between biomass, seed components and seed Cd concentration in various peanut (Arachis hypogaea L.) cultivars grown on Cd-contaminated soils. Ecotoxicol Environ Saf 110:174–181

    Article  CAS  Google Scholar 

  • Su G, Li F, Lin J, Liu C, Shi G (2012) Peanut as a potential crop for bioenergy production via Cd-phytoextraction: a life-cycle pot experiment. Plant Soil 365:337–345

    Article  CAS  Google Scholar 

  • Subramanian R, Subbramaniyan P, Ameen JN, Raj V (2016) Double bypasses soxhlet apparatus for extraction of piperine from Piper nigrum. Arab J Chem 9:S537–S540

    Article  CAS  Google Scholar 

  • Tang L, Hamid Y, Zehra A, Shohag MJI, He Z, Yang X (2020) Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system. Sci Total Environ 748:142481

    Article  CAS  Google Scholar 

  • Tang L, Luo W, Chen W, He Z, Gurajala HK, Hamid Y, Deng M, Yang X (2017) Field crops (Ipomoea aquatica Forsk. and Brassica chinensis L.) for phytoremediation of cadmium and nitrate co-contaminated soils via rotation with Sedum alfredii Hance. Environ Sci Pollut Res 24:19293–19305

    Article  CAS  Google Scholar 

  • Thewys T, Witters N, Van Slycken S, Ruttens A, Meers E, Tack FM, Vangronsveld J (2010) Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part I: Effect on the farmer’s income. Int J Phytoremediat 12:650–662

    Article  CAS  Google Scholar 

  • Tian Z, Ji YH, Sun LX, Xu XL, Fan DL, Zhong HL, Liang ZR, Ficsher G (2018) Changes in production potentials of rapeseed in the Yangtze River Basin of China under climate change: a multi-model ensemble approach. J Geogr Sci 28:1700–1714

    Article  Google Scholar 

  • Ubeynarayana N, Jeyakumar P, Bishop P, Pereira RC, Anderson CWN (2021) Effect of soil cadmium on root organic acid secretion by forage crops. Environ Pollut 268:115839

    Article  CAS  Google Scholar 

  • Wagner GJ, Yeargan R (1986) Variation in cadmium accumulation potential and tissue distribution of cadmium in tobacco. Plant Physiol 82:274–279

    Article  CAS  Google Scholar 

  • Wang F, Peng L, Zhou X, Zeng Q, Luo S (2021) Typical sources of Cd to paddy fields in different contaminated areas and their impacts on Cd accumulation in topsoil and rice in Changzhutan, China. Environ Res 193:110523

    Article  CAS  Google Scholar 

  • Wang G, Zhang S, Zhong Q, Xu X, Li T, Jia Y, Zhang Y, Peijnenburg W, Vijver MG (2018) Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Sci Total Environ 625:1021–1029

    Article  CAS  Google Scholar 

  • Wei W, Peng H, Xie Y, Wang X, Huang R, Chen H, Ji X (2021) The role of silicon in cadmium alleviation by rice root cell wall retention and vacuole compartmentalization under different durations of Cd exposure. Ecotoxicol Environ Saf 226:112810

    Article  CAS  Google Scholar 

  • Wu Q, Cui Y, Li Q, Sun J (2015) Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. J Hazard Mater 283:748–754

    Article  CAS  Google Scholar 

  • Xv L, Ge J, Tian S, Wang H, Yu H, Zhao J, Liu L (2020) A Cd/Zn Co-hyperaccumulator and Pb accumulator, Sedum alfredii, is of high Cu tolerance. Environ Pollut 263:114401

    Article  CAS  Google Scholar 

  • Yang GL, Zheng MM, Tan AJ, Liu YT, Feng D, Lv SM (2021) Research on the mechanisms of plant enrichment and detoxification of cadmium. Biology 10:544

    Article  CAS  Google Scholar 

  • Yang W, Wang S, Zhou H, Zeng M, Zhang J, Huang F, Shan S, Guo Z, Yi H, Sun Z, Gu J, Liao B (2022) Combined amendment reduces soil Cd availability and rice Cd accumulation in three consecutive rice planting seasons. J Environ Sci 111:141–152

    Article  Google Scholar 

  • Yang WJ, Gu JF, Zhou H, Huang F, Yuan TY, Zhang JY, Wang SL, Sun ZG, Yi HW, Liao BH (2020) Effect of three Napier grass varieties on phytoextraction of Cd- and Zn-contaminated cultivated soil under mowing and their safe utilization. Environ Sci Pollut Res 27:16134–16144

    Article  CAS  Google Scholar 

  • Yang Y, Ge Y, Tu P, Zeng H, Zhou X, Zou D, Wang K, Zeng Q (2019) Phytoextraction of Cd from a contaminated soil by tobacco and safe use of its metal-enriched biomass. J Hazard Mater 363:385–393

    Article  CAS  Google Scholar 

  • Yang Y, Ge Y, Zeng H, Zhou X, Peng L, Zeng Q (2017a) Phytoextraction of cadmium-contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. Sci Rep 7:7210

    Article  CAS  Google Scholar 

  • Yang Y, Zhou X, Tie B, Peng L, Li H, Wang K, Zeng Q (2017b) Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere 188:148–156

    Article  CAS  Google Scholar 

  • Yang ZH, Dong CD, Chen CW, Sheu YT, Kao CM (2018) Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environ Sci Pollut Res 25:5231–5242

    Article  CAS  Google Scholar 

  • Yu G, Jiang P, Fu X, Liu J, Sunahara GI, Chen Z, Xiao H, Lin F, Wang X (2020) Phytoextraction of cadmium-contaminated soil by Celosia argentea Linn.: a long-term field study. Environ Pollut 266:115408

    Article  CAS  Google Scholar 

  • Yu X, Shen T, Kang X, Cui Y, Chen Q, Shoaib M, Liu H, Zhang F, Hussain S, Xiang Q, Zhao K, Gu Y, Ma M, Li S, Zou L, Liang Y (2021) Long-term phytoremediation using the symbiotic Pongamia pinnata reshaped soil micro-ecological environment. Sci Total Environ 774:145112

    Article  CAS  Google Scholar 

  • Yuan X, Xue N, Han Z (2021) A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J Environ Sci 101:217–226

    Article  CAS  Google Scholar 

  • Zeng X, Xiao Z, Zhang G, Wang A, Li Z, Liu Y, Wang H, Zeng Q, Liang Y, Zou D (2018) Speciation and bioavailability of heavy metals in pyrolytic biochar of swine and goat manures. J Anal Appl Pyrol 132:82–93

    Article  CAS  Google Scholar 

  • Zhang J, Wang Y, Wang X, Wu W, Cui X, Cheng Z, Yan B, Yang X, He Z, Chen G (2022) Hydrothermal conversion of Cd/Zn hyperaccumulator (Sedum alfredii) for heavy metal separation and hydrochar production. J Hazard Mater 423:127122

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759

    Article  CAS  Google Scholar 

  • Zou J, Song F, Lu Y, Zhuge Y, Niu Y, Lou Y, Pan H, Zhang P, Pang L (2021) Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc. Chemosphere 276:130223

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. U20A20108 and 42077142).

Author information

Authors and Affiliations

Authors

Contributions

Linhan Chen: formal analysis, investigation, data curation, writing-original draft, software, validation. Wenjun Yang: data curation, investigation. Yang Yang: supervision, data curation, software, methodology. Pengfei Tu: software, validation, supervision. Shengnan Hu: data curation, methodology. Qingru Zeng: conceptualization, methodology, resources, writing-review and editing, data curation, project administration, supervision, funding acquisition.

Corresponding author

Correspondence to Qingru Zeng.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors listed agreed to submit the manuscript to the journal.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Kitae Baek

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, W., Yang, Y. et al. Three-season rotation of chicory–tobacco–peanut with high biomass and bioconcentration factors effectively remediates cadmium-contaminated farmland. Environ Sci Pollut Res 29, 64822–64831 (2022). https://doi.org/10.1007/s11356-022-20400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20400-0

Keywords

Navigation