Skip to main content
Log in

Combining ecophysiological and microbial ecological approaches to study the relationship between Medicago truncatula genotypes and their associated rhizosphere bacterial communities

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

A Commentary to this article was published on 23 January 2013

Abstract

Background and aims

To assess how plant genotype and rhizosphere bacterial communities may interact, the genetic structure and diversity of bacterial communities in the rhizosphere soil of different Medicago truncatula genotypes were studied in relation to the plant carbon and nitrogen nutrition at the whole plant level.

Methods

The genetic structure and diversity of plant-associated rhizosphere bacterial communities was analysed by Automated Ribosomal Intergenic Spacer Analysis and 454-pyrosequencing. In parallel, the carbon and nitrogen nutrition of the plants was estimated by a phenotypic description at both structural level (growth) and functional level (using carbon and nitrogen isotope labeling and an ecophysiological framework).

Results

An early effect of the plant genotype was observed on the rhizosphere bacterial communities, while few significant differences were detected at the plant structural phenotypic level. However, at a functional level, the different Medicago truncatula genotypes could be distinguished by their different nutritional strategies. Moreover, a comparison analysis showed that ecophysiological profiles of the different Medicago truncatula genotypes were correlated to the genetic structure and the diversity of the rhizosphere bacterial communities.

Conclusions

The exploration of the genetic structure and diversity of rhizosphere bacterial communities combined with an ecophysiological approach is an innovative way to progress in our knowledge of plant-microbe interactions in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta-Martinez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770

    Article  CAS  Google Scholar 

  • Andreote FD, de Araujo WL, de Azevedo JL, van Elsas JD, da Rocha UN, van Overbeek LS (2009) Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl Environ Microbiol 75:3396–3406

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interations with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2011) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13:340–349

    Article  PubMed  CAS  Google Scholar 

  • Brooks PD, Stark JM, McInteer BB, Preston T (1989) Diffusion method to prepare soil extracts for automated N-15 analysis. Soil Sci Soc Am J 53:1707–1711

    Article  CAS  Google Scholar 

  • Brouwer R (1983) Functional equilibrium - sense or nonsense. Neth J Agric Sci 31:335–348

    Google Scholar 

  • Buee M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Article  CAS  Google Scholar 

  • Chenu K (2004) Variabilité phénotypique de l’architecture de la rosette d’Arabidopsis thaliana en réponse au rayonnement: analyse et modélisation de la réponse de différents génotypes. Université Montpellier 2, Montpellier, France

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  • da Rocha UN, van Overbeek L, van Elsas JD (2009) Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiol Ecol 69:313–328

    Article  PubMed  Google Scholar 

  • Dalmastri C, Chiarini L, Cantale C, Bevivino A, Tabacchioni S (1999) Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microb Ecol 38:273–284

    Article  PubMed  Google Scholar 

  • Doledec S, Chessel D (1994) Co-inertia analysis - an alternative method for studying species environment relationships. Freshw Biol 31:277–294

    Article  Google Scholar 

  • Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089

    Article  Google Scholar 

  • Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl Environ Microbiol 69:7310–7318

    Article  PubMed  CAS  Google Scholar 

  • Farrar JF, Jones DL (2000) The control of carbon acquisition by roots. New Phytol 147:43–53

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    PubMed  CAS  Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N-2 fixation in agriculture benefit the environment? Plant Soil 252:177–186

    Article  CAS  Google Scholar 

  • Jeudy C, Ruffel S, Freixes S, Tillard P, Santoni AL, Morel S, Journet EP, Duc G, Gojon A, Lepetit M, Salon C (2010) Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses. New Phytol 185:817–828

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009a) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009b) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    Article  PubMed  CAS  Google Scholar 

  • Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Lemaire G, van Oosterom E, Jeuffroy MH, Gastal F, Massignam A (2008) Crop species present different qualitative types of response to N deficiency during their vegetative growth. Field Crop Res 105:253–265

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Mathieu O (2005) Application du traçage isotopique 15N à l’étude du protoxyde d’azote (N2O), gaz à effet de serre produit par l’acitivité microbienn des sols. Quantification des flux et approche spaciale au terrain. Université Bourgogne, Dijon, France

  • Mazzola M, Funnell DL, Raaijmakers JM (2004) Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microb Ecol 48:338–348

    Article  PubMed  CAS  Google Scholar 

  • Micallef SA, Shiaris MP, Colon-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742

    Article  PubMed  CAS  Google Scholar 

  • Minchin FR, Summerfield RJ, Hadley P, Roberts EH, Rawsthorne S (1981) Carbon and nitrogen nutrition of nodulated roots of grain legumes. Plant Cell Environ 4:5–26

    Article  CAS  Google Scholar 

  • Moreau D (2007) Réponse du développement et de la croissance de Medicago truncatula aux facteurs environnementaux: contribution à l’élaboration d’outils de phénotypage pour l’analyse de la variabilité génétique associée à la nutrition azotée. Université Bourgogne, Dijon, France

  • Moreau D, Salon C, Munier-Jolain N (2006) Using a standard framework for the phenotypic analysis of Medicago truncatula: an effective method for characterizing the plant material used for functional genomics approaches. Plant Cell Environ 29:1087–1098

    Article  PubMed  CAS  Google Scholar 

  • Moreau D, Voisin AS, Salon C, Munier-Jolain N (2008) The model symbiotic association between Medicago truncatula cv. Jemalong and Rhizobium meliloti strain 2011 leads to N-stressed plants when symbiotic N-2 fixation is the main N source for plant growth. J Exp Bot 59:3509–3522

    Article  PubMed  CAS  Google Scholar 

  • Moreau D, Burstin J, Aubert G, Huguet T, Ben C, Prosperi JM, Salon C, Munier-Jolain N (2012) Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula. Theor Appl Genet 124:755–768

    Article  PubMed  CAS  Google Scholar 

  • Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 170:165–175

    Article  PubMed  CAS  Google Scholar 

  • Munier-Jolain N, Carrouée B (2003) Considering pea in sustainable agriculture: agricultural and environmental arguments. Cahiers Agricultures 12:111–120

    Google Scholar 

  • Nemecek T, von Richthofen JS, Dubois G, Casta P, Charles R, Pahl H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393

    Article  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Normand P, Ponsonnet C, Nesme X, Neyra M, Simonet P (1996) ITS analysis of prokaryotes. In: Akkermans DL, Van Elsas JD, De Bruijn EI (eds) Molecular microbial ecology manual. Kluwer, Amsterdam, pp 1–12

    Google Scholar 

  • Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Appl Environ Microbiol 73:913–921

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GED, Downie JM (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  PubMed  CAS  Google Scholar 

  • Paffetti D, Scotti C, Gnocchi S, Fancelli S, Bazzicalupo M (1996) Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties. Appl Environ Microbiol 62:2279–2285

    PubMed  CAS  Google Scholar 

  • Parra-Colmenares A, Kahn ML (2005) Determination of nitrogen fixation effectiveness in selected Medicago truncatula isolates by measuring nitrogen isotope incorporation into pheophytin. Plant Soil 270:159–168

    Article  CAS  Google Scholar 

  • Pawlowski J, Christen R, Lecroq B, Bachar D, Shahbazkia HR, Amaral-Zettler L, Guillou L (2011) Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS One 6:e18169

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Ranjard L, Poly F, Nazaret S (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res Microbiol 151:167–177

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L, Poly F, Lata JC, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L, Lejon DPH, Mougel C, Schehrer L, Merdinoglu D, Chaussod R (2003) Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol 5:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Reeder J, Knight R (2009) The ‘rare biosphere’: a reality check. Nat Methods 6:636–637

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  • Ronfort J, Bataillon T, Santoni S, Delalande M, David JL, Prosperi JM (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. Bmc Plant Biology 6

  • Salon C, Voisin AS, Delfosse O, Mary B (2010) Methodologies for measuring symbiotic nitrogen fixation in the field. In: Munier-Jolain N, Biarnes V, Chaillet I, Lecoeur J, Jeuffroy MH (eds) Physiology of the pea crop. CRC Press, Editions Quae, Versailles, pp 83–87

    Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393

    Article  PubMed  CAS  Google Scholar 

  • Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755

    Article  PubMed  CAS  Google Scholar 

  • Terrat S, Christen R, Dequiedt S, Lelievre M, Nowak V, Regnier T, Bachar D, Plassart P, Wincker P, Jolivet C, Bispo A, Lemanceau P, Maron PA, Mougel C, Ranjard L (2011) Molecular biomass and metataxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microb Biotechnol

  • Thioulouse J, Dray S (2007) Interactive multivariate data analysis in R with the ade4 and ade4TkGUI packages. J Stat Softw 22:1–14

    Google Scholar 

  • van Overbeek L, van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296

    Article  PubMed  Google Scholar 

  • Voisin AS, Salon C, Jeudy C, Warembourg FR (2003) Root and nodule growth in Pisum sativum L. in relation to photosynthesis: analysis using C-13-labelling. Ann Bot 92:557–563

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to P. Mathey, C. Jeudy, V. Durey and A.L. Santoni for their excellent technical assistance, C. Lepinay and J. Manifacier for their help during the three harvests, M. P. Bataillé (Université de Caen, France) for C and N analysis, A. Viollet (INRA, Dijon, France) for mycorrhizal infection determination, O. Mathieu (Université Bourgogne, Dijon, France) for his help on N diffusion, M. Delalande (INRA, Mauguio, France) for seeds of M. Truncatula We also thank S. Dequiedt, D. Moreau, A.S. Voisin, M. Prudent and A. Larmure for their useful advices and R. Thompson for the improvement of the English. This work was supported by a PhD grant to A. Zancarini (project n°089201PPO24S00901) from INRA and the Regional Council of Burgundy (France). We thank the Regional Council of Burgundy for support to intregrated Agrale 6 projects (AIB 29000427 & 29000594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Munier-Jolain.

Additional information

Responsible Editor: Jeff R. Powell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 73 kb)

ESM 2

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zancarini, A., Mougel, C., Terrat, S. et al. Combining ecophysiological and microbial ecological approaches to study the relationship between Medicago truncatula genotypes and their associated rhizosphere bacterial communities. Plant Soil 365, 183–199 (2013). https://doi.org/10.1007/s11104-012-1364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1364-7

Keywords

Navigation