Skip to main content
Log in

Water-deficit tolerance in citrus is mediated by the down regulation of PIP gene expression in the roots

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Water deficit (WD) is a growing problem in agriculture. In citrus crops, genetically-determined rootstock characteristics are important factors influencing plant responses to WD. Aquaporins are involved in regulating the water supply to the plant by mediating water flow through the cell membranes. Recent studies support a direct role for aquaporins in plant water relations and demonstrate their involvement in WD tolerance. This study investigates the relationship between photosynthetic and water-balance parameters with aquaporin expression levels and hydraulic conductance of roots (Kr) in conditions of moderate WD in citrus rootstocks. The plant materials used were the rootstocks Poncirus trifoliata (L.) Raf. (PT), Cleopatra mandarin (Citrus reshni Hort ex Tan.) (CM) and 030115 (a hybrid of the two former rootstocks), all grafted with the citrus variety ‘Valencia Late’ (C. sinensis (L.) Osb). Plants were irrigated with two differents irrigation doses (normal irrigation and moderate WD) during 70 days and leaf water potential (ψs), net CO2 assimilation (ACO2), transpiration, stomatal conductance (gs) and substomatal CO2 concentration (Ci) were measured periodically under both irrigation conditions. Kr and PIP1 and PIP2 gene expression levels in fine roots of control plants and plants subjected to WD on day 43 of the experiment were determined. Under WD conditions, the hybrid 030115 drastically reduced aquaporin expression and Kr, accompanied by a loss of plant vigour but without reducing the net CO2 assimilation (ACO2). PT maintained the same aquaporin expression level and similar Kr under WD as under normal irrigation conditions, but suffered a sharp reduction in ACO2. CM, which has lower Kr and aquaporin expression than PT under both normal irrigation conditions and WD, responded better to water stress conditions than PT. Low aquaporin levels, or down-regulated aquaporin expression, accompanied by decreased plant vigour led to decreased plasma membrane permeability, thereby facilitating water retention in the cells under water stress conditions. This may induce water stress tolerance in citrus rootstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channel proteins. Am J Physiol 261:F461

    Google Scholar 

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  PubMed  CAS  Google Scholar 

  • Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  PubMed  CAS  Google Scholar 

  • Almeida-Rodriguez AM, Cooke JEK, Yeh F, Zwiazek JJ (2010) Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii x balsamifera clones with different drought resistance strategies. Physiol Plant 140:321–333

    Article  PubMed  CAS  Google Scholar 

  • Ancillo G, Gadea J, Forment J, Guerri J, Navarro L (2007) Class prediction of closely related plant varieties using gene expression profiling. J Exp Bot 58:1927–1933

    Article  PubMed  CAS  Google Scholar 

  • Aasamaa K, Sõber A (2001) Hydraulic conductance and stomatal sensitivity to changes of leaf water status in six deciduous tree species. Biol Plant 44:65–73

    Article  Google Scholar 

  • Arbona V, Iglesias DJ, Jacas J, Primo-Millo E, Talon M, Gomez-Cadenas A (2005) Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 270:73–82

    Article  CAS  Google Scholar 

  • Barrowclough DE, Peterson CA, Steudle E (2000) Radial hydraulic conductivity along developing onion roots. J Exp Bot 51:547–557

    Article  PubMed  CAS  Google Scholar 

  • Brodribb TJ, Holbrook NM (2003) Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest. New Phytol 158:295–303

    Article  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381

    Article  CAS  Google Scholar 

  • Carvajal M, Martínez V, Alcaraz CF (1999) Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol Plant 105:95–101

    Article  CAS  Google Scholar 

  • Castle WS, Krezdorn AH (1975) Effect of citrus rootstocks on root distribution and leaf mineral content of “Orlando” Tangelo trees. J Am Soc Hortic Sci 100:1–4

    CAS  Google Scholar 

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    Article  PubMed  CAS  Google Scholar 

  • Cruz RT, Jordan WR, Drew MC (1992) Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol 99:203–212

    Article  PubMed  CAS  Google Scholar 

  • Daniels MJ, Mirkov TE, Chrispeels MJ (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol 106:1325–1333

    Article  PubMed  CAS  Google Scholar 

  • Danielson JÅH, Johanson U (2008) Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45

    Article  PubMed  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol 42:55–76

    Article  CAS  Google Scholar 

  • Driver S, Kuniyuki S (1984) In vitro propagation of Paradox walnut rootstock. HortScience 19:507–509

    Google Scholar 

  • Enstone DE, Peterson CA (1998) Effects of exposure to humid air on epidermal viability and suberin deposition in maize (Zea mays L.) roots. Plant Cell Environ 21:837–844

    Article  CAS  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228

    Article  PubMed  CAS  Google Scholar 

  • Forner-Giner MA, Alcaide A, Primo-Millo E, Forner JB (2003) Performance of “Navelina” orange on 14 rootstocks in Northern Valencia (Spain). Sci Hortic (Amsterdam) 98:223–232

    Article  Google Scholar 

  • Franks PJ (2006) Higher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients. Plant Cell Environ 29:584–593

    Article  PubMed  Google Scholar 

  • Galmés J, Pou A, Alsina MM, Tomás M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681

    Article  PubMed  Google Scholar 

  • García-Sánchez F, Syvertsen JP, Gimeno V, Botía P, Perez-Perez JG (2007) Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol Plant 130:532–542

    Article  Google Scholar 

  • Gimeno J, Gadea J, Forment J, Pérez-Valle J, Santiago J, Martínez-Godoy MA, Yenush L, Bellés JM, Brumós J, Colmenero-Flores JM, Talón M, Serrano R (2009) Shared and novel molecular responses of mandarin to drought. Plant Mol Biol 70:403–409

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Cadenas A, Tadeo FR, Talon M, Primo-Millo E (1996) Leaf abscission induced by ethylene in water stressed intact seedling of Cleopatra Mandarin requires previous abscisic acid accumulation in roots. Plant Physiol 112:404–408

    Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134

    Article  PubMed  Google Scholar 

  • Hachez C, Zelazny E, Chaumont F (2006) Modulating the expression of aquaporin genes in planta: a key to understand their physiological functions? Biochim Biophys Acta 1758:1142–1156

    Article  PubMed  CAS  Google Scholar 

  • Henzler T, Waterhouse RN, Smyth AJ, Carvajal M, Cooke DT, Schäffner AR, Steudle E, Clarkson DT (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210:50–60

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Sta Circular 347:1–32

    Google Scholar 

  • Hukin D, Doering-Saad C, Thomas CR, Pritchard J (2002) Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmamlemma aquaporin genes in growing maize roots. Planta 215:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  PubMed  CAS  Google Scholar 

  • Jifon JL, Syvertsen JP (2003) Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol 23:119–127

    PubMed  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellborm P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Larsson C, Ek B, Kjellbom P (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell 8:1181–1191

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Article  PubMed  CAS  Google Scholar 

  • Kammerloher W, Fischer U, Piechottka GP, Schäffner AR (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J 6:187–199

    Article  PubMed  CAS  Google Scholar 

  • Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasako K (2002) Functional analysis of water channels in barley roots. Plant Cell Physiol 43:885–893

    Article  PubMed  CAS  Google Scholar 

  • Kirch HH, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol 123:111–124

    Article  PubMed  CAS  Google Scholar 

  • Lei YB, Yin CY, Li CY (2006) Differences in some morphological, physiological, and biochemical, responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191

    Article  CAS  Google Scholar 

  • Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, Su WA (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165:1879–1888

    Article  PubMed  CAS  Google Scholar 

  • Lo Gullo MA, Nardini A, Salleo S, Tyree MT (1998) Changes in root hydraulic conductance (Kr) of Olea oleaster seedlings following drought stress and irrigation. New Phytol 140:25–31

    Article  Google Scholar 

  • Lovisolo C, Secchi F, Nardini A, Salleo S, Buffa R, Schubert A (2007) Expression of PIP1 and PIP2 aquaporins is enhanced in olive dwarf genotypes and is related to root and leaf hydraulic conductance. Physiol Plant 130:543–551

    Article  CAS  Google Scholar 

  • Lu Z, Neumann PM (1999) Water stress inhibits hydraulic conductance and leaf growth in rice seedlings but not the transport of water via mercury-sensitive water channels in the root. Plant Physiol 120:143–151

    Article  PubMed  CAS  Google Scholar 

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96

    Article  CAS  Google Scholar 

  • Maggio A, Joly RJ (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems: evidence of a channel-mediated water pathway. Plant Physiol 109:331–335

    PubMed  CAS  Google Scholar 

  • Mahdieh M, Mostajeran A, Horie T, Katsuhara M (2008) Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol 49:801–813

    Article  PubMed  CAS  Google Scholar 

  • Martre P, North GB, Nobel PS (2001) Hidraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiol 126:352–362

    Article  PubMed  CAS  Google Scholar 

  • Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ (2002) Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol 130:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Ballesta MC, Martínez V, Carvajal M (2000) Regulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions. Aust J Plant Physiol 27:685–691

    Google Scholar 

  • Más P, Sánchez-Navarro JA, Sánchez-Pina MA, Pallás V (1993) Chemiluminescent and colorigenic detection of Cherry leaf roll virus with digoxigeninlabelled RNA probes. J Virol Methods 45:93–102. doi:10.1016/0166-0934(93)90143-F

    Article  PubMed  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol 48:399–429

    Article  CAS  Google Scholar 

  • Medina CL, Machado FC (1998) Gas exchange and water relations of Valencia orange tree grafted on rangpur lime and Poncirus trifoliata submitted to a water deficit. Bragantia, Campinas 57:15–22

    Google Scholar 

  • Morillon R, Lassalles JP (2002) Water deficit during root development: effects on the growth of roots and osmotic water permeability of isolated root protoplasts. Planta 214:392–399

    Article  PubMed  CAS  Google Scholar 

  • Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: Diurnal and circadian regulation. Plant Cell 14:727–739

    Google Scholar 

  • North GB, Nobel PS (1996) Radial hydraulic conductivity of individual root tissues of Opuntia ficus-indica (L.) Miller as soil moisture varies. Ann Bot 77:133–142

    Article  Google Scholar 

  • North GB, Nobel PS (2000) Heterogeneity in water availability alters cellular development and hydraulic conductivity along roots of a desert succulent. Ann Bot 85:247–255

    Article  Google Scholar 

  • North GB, Martre P, Nobel PS (2004) Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave desserti in wet, dry, and rewetted soil. Plant Cell Environ 27:219–228

    Article  CAS  Google Scholar 

  • Pallás V, Más P, Sánchez Navarro JA (1998) Detection of plant RNA viruses by nonisotopic dot-blot hybridization. Meth Mol Biol (Clifton, NJ) 81:461–468

    Google Scholar 

  • Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:279–740

    Article  Google Scholar 

  • Rodríguez-Gamir J, Intrigliolo DS, Primo-Millo E, Forner-Giner MA (2010a) Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiol Plant 139:159–169

    Article  PubMed  Google Scholar 

  • Rodríguez-Gamir J, Primo-Millo E, Forner JB, Forner-Giner MA (2010b) Citrus rootstock responses to water stress. Sci Hortic (Amsterdam) 126:95–102

    Article  Google Scholar 

  • Rodríguez-Gamir J, Ancillo G, González-Mas MC, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol Biochem 49:636–645

    Article  PubMed  Google Scholar 

  • Romero P, Navarro JM, Pérez-Pérez J, García-Sánchez F, Gómez-Gómez A, Porras I, Martínez V, Botía P (2006) Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiol 26:1537–1548

    PubMed  CAS  Google Scholar 

  • Sakr S, Alves G, Morillon R, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ (2003) Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol 133:630–641

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EJ, Maniatis T (1989) In: Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press.

  • Scholander P, Hammel H, Bradstreet EY, Hemmingsen E (1965) Sap pressure in vascular plants. Science 37:247–274

    Google Scholar 

  • Secchi F, Lovisolo C, Uehlein N, Kaldenhoff R, Schubert S (2007) Isolation and fuctional characterization of three aquaporins from olive (Olea europaea L.). Planta 225:381–392

    Article  PubMed  CAS  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from celular effects to function in plants. Plant Cell 14:869–876

    Article  PubMed  CAS  Google Scholar 

  • Sinclair TR, Allen LH (1982) Carbon dioxide and water vapour exchange of leaves on field-grown citrus trees. J Exp Bot 33:1166–1175

    Article  CAS  Google Scholar 

  • Smart LB, Moskal W, Cameron KD, Bennett AB (2001) MIP Genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42:686–693

    Article  PubMed  CAS  Google Scholar 

  • Solari LI, Johnson S, DeJong TM (2006) Hydraulic conductance characteristics of peach (Prunus persica) trees on different rootstocks are related to biomass production and distribution. Tree Physiol 26:1343–1350

    PubMed  Google Scholar 

  • Suga S, Komatsu S, Maeshima M (2002) Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol 43:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Sumner ME, Boswell FC (1981) Alleviating nutrient stress. In: Arkin GF, Taylor HM (eds), Modifying the root environment to reduce crop stress. Amer. Soc. Agr. Eng. Monograph No. 4, St. Joseph, Mich, pp 99–137.

  • Syvertsen JP (1984) Light acclimation in citrus leaves. II. CO2 assimilation and light, water, and nitrogen use efficiency. J Am Soc Hortic Sci 109:812–817

    Google Scholar 

  • Syvertsen JP, Graham JH (1985) Hydraulic conductivity of roots, mineral nutrition, and leaf gas exchange of Citrus rootstocks. J Am Soc Hortic Sci 110:865–869

    Google Scholar 

  • Syvertsen, JP, Lloyd JJ (1994) Citrus. In: Schaffer BA, Andersen PC (eds) Handbook of environmental physiology of fruit crops. Vol. II. Subtropical and tropical crops. CRC Press, Boca Raton, FL, pp 65–99.

  • Syvertsen JP, Levy Y (2005) Salinity interactions with other abiotic and biotic stresses in citrus. HortTechnology 15:100–103

    Google Scholar 

  • Tyree MT, Patiño S, Bennink J, Alexander J (1995) Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot 46:83–94

    Article  CAS  Google Scholar 

  • Tombesi S, Johnson RS, Day KR, DeJong TM (2010) Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size controlling capacity of peach rootstocks. Ann Bot 105:327–331

    Article  PubMed  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Tyree MT (2000) Plant hydraulic conductance measured by the high pressure flow meter in crop plants. J Exp Bot 51:823–828

    Article  PubMed  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 125:173–194

    Article  Google Scholar 

  • Vasconcellos LABC, Castle WS (1994) Trunk xylem anatomy of mature healthy and blighted grapefruit trees on several rootstocks. J Am Soc Hortic Sci 119:185–194

    Google Scholar 

  • Voicu MC, Zwiazek JJ (2009) Inhibitor studies of leaf lamina hydraulic conductance in trembling aspen (Populus tremuloides Michx.) leaves. Tree Physiol 30:193–204

    Article  PubMed  Google Scholar 

  • Wan X, Zwiazek JJ (1999) Mercuric chloride effects on root water transport in aspen seedlings. Plant Physiol 121:939–946

    Article  PubMed  CAS  Google Scholar 

  • Weig A, Deswarte C, Chrispeels MJ (1997) The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol 114:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Katsuhara M, Kelly WB, Michalowski CB, Bohnert HJ (1995) A family of transcripts encoding water channel proteins: tissue-specific expression in common ice plant. Plant Cell 7:1129–1142

    Article  PubMed  CAS  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414

    Article  PubMed  CAS  Google Scholar 

  • Zekri M, Parsons LR (1989) Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses. Physiol Plant 77:99–106

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (RTA2008-0060) and Generalitat Valenciana. G. Ancillo and M.A. Forner-Giner are recipient of a contract from Conselleria de Agricultura, Pesca y Alimentación (Generalitat Valenciana, Spain) under Proy_IVIA09/03 and Proy_IVIA09/04, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ángeles Forner-Giner.

Additional information

Responsible Editor: John McPherson Cheeseman.

Juan Rodríguez-Gamir and Gema Ancillo contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material

(PDF 6936 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Gamir, J., Ancillo, G., Aparicio, F. et al. Water-deficit tolerance in citrus is mediated by the down regulation of PIP gene expression in the roots. Plant Soil 347, 91–104 (2011). https://doi.org/10.1007/s11104-011-0826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0826-7

Keywords

Navigation