Skip to main content
Log in

Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Nitrate fertilization has been shown to increase Zn hyperaccumulation by Noccaea caerulescens (Prayon) (formerly Thlaspi caerulescens). However, it is unknown whether this increased hyperaccumulation is a direct result of NO3 nutrition or due to changes in rhizosphere pH as a result of NO3 uptake. This paper investigated the mechanism of NO3 -enhanced Zn hyperaccumulation in N. caerulescens by assessing the response of Zn uptake to N form and solution pH. Plants were grown in nutrient solution with 300 μM Zn and supplied with either (NH4)2SO4, NH4NO3 or Ca(NO3)2. The solutions were buffered at either pH 4.5 or 6.5. The Zn concentration and content were much higher in shoots of NO3 -fed plants than in NH4 +-fed plants at pH 4.5 and 6.5. The Zn concentration in the shoots was mainly enhanced by NO3 , whereas the Zn concentration in the roots was mainly enhanced by pH 6.5. Nitrate increased Zn uptake in the roots at pH 6.5 and increased apoplastic Zn at pH 4.5. Zinc and Ca co-increased and was found co-localized in leaf cells of NO3 -fed plants. We conclude that NO3 directly enhanced Zn uptake and translocation from roots to shoots in N. caerulescens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. Springer-Verlag, New York

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements- A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bennett FA, Tyler EK, Brooks RR, Gregg PEH, Stewart RB (1998) Fertilisation of hyperaccumulators to enhance their potential for phytoremediation and phytomining. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, London

    Google Scholar 

  • Bigot J, Binet P (1986) The study of cation exchange capacity and selectivity of isolated root cell walls of Cochlearia angelica and Phaseolus vulgaris grown in media of different salinities. Can J Bot 64:955–958

    Article  Google Scholar 

  • Boularbah A, Schwartz C, Bitton G, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere 63:802–810

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2006) Zinc in Plants. New Phytol 173:677–702

    Article  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. J Environ Qual 23:1151–1157

    Article  CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ Sci Technol 29:1581–1585

    Article  CAS  Google Scholar 

  • Cao X, Ma LQ, Rhue DR, Appel CS (2004) Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ Pollut 131:435–444

    Article  CAS  PubMed  Google Scholar 

  • Clarkson DT (1988) Movements of ions across roots. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman Scientific and Technical, Essex

    Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Da Silva JJRF, Williams RJP (eds) (1991) Zinc: Lewis acid catalysis and regulation. Clarendon, Oxford

    Google Scholar 

  • Dechamps C, Roosens NH, Hotte C, Meerts P (2005) Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soil. Plant Soil 273:327–335

    Article  CAS  Google Scholar 

  • Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian L (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430

    Article  CAS  Google Scholar 

  • Felle HH (1998) The apoplastic pH of the Zea mays root cortex as measured with pH-sensitive microelectrodes: aspects of regulation. J Exp Bot 49:987–995

    Article  CAS  Google Scholar 

  • Forde BG, Clarkson DT (1999) Nitrate and ammonium nutrition of plants: Physiological and molecular perspectives. In: Callow JA (ed) Advances in botanical research: Incorporating advances in plant pathology. Academic, London

    Google Scholar 

  • Frey B, Keller C, Zierold K (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675–687

    Article  CAS  Google Scholar 

  • Grignon C, Sentenac H (1991) pH and ionic conditions in the apoplast. Ann Rev Plant Physiol Plant Mol Biol 42:103–128

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hamlin RL, Barker AV (2006) Influence of ammonium and nitrate nutrition on plant growth and zinc accumulation by Indian mustard. J Plant Nutri 29:1523–1541

    Article  CAS  Google Scholar 

  • Keltjens WG, Van Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203:119–126

    Article  CAS  Google Scholar 

  • Kennedy CD, Gonsalves FAN (1987) The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H+ efflux of excised roots. J Exp Bot 38:800–817

    Article  CAS  Google Scholar 

  • Kirkby EA, Knight AH (1977) Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation, and cation-anion balance in whole tomato plants. Plant Physiol 60:349–353

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV (1991) Mechanisms of micronutrient uptake and translocation in plants. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture. Soil Science Society of America, Wisconsin

    Google Scholar 

  • Kupper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    Article  CAS  Google Scholar 

  • Kupper H, Lombi E, Zhao F, McGrath S (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  CAS  PubMed  Google Scholar 

  • Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by x-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  PubMed  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722

    CAS  PubMed  Google Scholar 

  • Li T, Yang X, Meng F, Lu L (2007) Zinc adsorption and desorption characteristics in root cell wall involving zinc hyperaccumulation in Sedum alfredii Hance. J Zheijang Univ Sci B 8:111–115

    Article  CAS  Google Scholar 

  • Magalhaes R, Huber DM (1989) Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution culture. Nutri Cycl Agroecosyst 21:1–6

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • McClure PR, Kochian LV, Spanswick RM, Shaff JE (1990) Evidence for cotransport of nitrate and protons in maize roots. I. Effects of nitrate on the membrane potential. Plant Physiol 93:281–289

    Article  CAS  PubMed  Google Scholar 

  • McGrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153–159

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Miller AJ, Cookson SJ, Smith SJ, Wells DM (2001) The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot 52:541–549

    Article  CAS  PubMed  Google Scholar 

  • Monsant AC, Tang C, Baker AJM (2008) The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens. Chemosphere 73:635–642

    Article  CAS  PubMed  Google Scholar 

  • Nishizono H, Ichikawa H, Suziki S, Ishii F (1987) The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil 101:15–20

    Article  CAS  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Ann Rev Plant physiol Plant Mol Biol 52:817–845

    Article  CAS  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schjorring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  CAS  PubMed  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2007) The Rhizosphere. Biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton

    Book  Google Scholar 

  • Raab TK, Terry N (1994) Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. Plant Physiol 105:1159–1166

    CAS  PubMed  Google Scholar 

  • Rascio W (1977) Metal accumulation by some plants growing on zinc mine deposits. Oikos 29:250–253

    Article  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19–48

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using x-ray absorption spectroscopy. Environ Sci Technol 33:713–717

    Article  CAS  Google Scholar 

  • Sargeant M, Sale P, Tang C (2006) Salt priming improves establishment of Distichlis spicata under saline conditions. Aust J Agric Res 57:1259–1265v

    Article  CAS  Google Scholar 

  • Sarret G, Vangronsveld J, Manceau A, Musso M, D’Haen J, Menthonnex J, Hazemann J (2001) Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environ Sci Technol 35:2854–2859

    Article  CAS  PubMed  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and nonhyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  CAS  PubMed  Google Scholar 

  • Scheible W, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    Article  CAS  PubMed  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  CAS  Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  • Sirguey C, Schwartz C, Morel JL (2006) Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilization. Int J Phytorem 8:149–161

    Article  Google Scholar 

  • Smith RAH, Bradshaw AD (1979) The use of metal tolerant plant populations for the reclamation of metalliferous wastes. J Appl Ecol 16:595–612

    Article  CAS  Google Scholar 

  • Sparks DL (1995) Environmental soil chemistry. Academic, San Diego

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer Associates, Inc., Massachusetts

    Google Scholar 

  • Tang C, Barton L, Raphael C (1998) Pasture legume species differ in their capacity to acidify soil. Aust J Agric Res 49:53–58

    Article  CAS  Google Scholar 

  • Tolra RP, Poschenrieder C, Barcelό J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids. J Plant Nutri 19:1541–1550

    Article  CAS  Google Scholar 

  • Ullrich WR, Larsson M, Larsson CM, Lesch S, Novacky A (1984) Ammonium uptake in Lemna gibba G1, related membrane potential changes, and inhibition of anion uptake. Physiol Plant 61:369–376

    Article  CAS  Google Scholar 

  • Van Beusichem ML, Kirkby EA, Baas R (1988) Influence of nitrate and ammonium nutrition on the uptake, assimilation, and distribution of nutrients in Ricinus communis. Plant Physiol 86:914–921

    Article  PubMed  Google Scholar 

  • Van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Van Themaat EVL, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed  Google Scholar 

  • Vazquez MD, Barcelo J, Poschenrieder C, Madico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140:350–355

    CAS  Google Scholar 

  • Vazquez MD, Poschenrieder C, Barcelo J, Baker AJM, Hatton P, Cope GH (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens. Bot Acta 107:243–250

    CAS  Google Scholar 

  • Verkleij JAC (2008) Mechanisms of metal hypertolerance and (hyper) accumulation in plants. Agrochim 52:167–188

    CAS  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA (2006a) Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol Biochem 38:1451–1461

    Article  CAS  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006b) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337

    Article  CAS  Google Scholar 

  • Whiting SN, Leake JR, McGrath SP, Baker AJM (2001) Assessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with non-accumulator plants and soil extraction. Plant Soil 237:147–156

    Article  CAS  Google Scholar 

  • Wojcik M, Skorzynska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48:145–155

    Article  CAS  Google Scholar 

  • Xie Y, Jiang RF, Zhang FS, McGrath S, Zhao F (2009) Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil 318:205–215

    Article  CAS  Google Scholar 

  • Zhao FJ, Shen ZG, McGrath SP (1998) Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 21:108

    Article  CAS  Google Scholar 

  • Zhao F, Lombi E, Breedon T, McGrath S (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    Article  CAS  Google Scholar 

  • Zhuang P, Ye ZH, Lan CY, Xie ZW, Shu WS (2005) Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant Soil 276:153–162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Alan Baker for valuable discussions, Dr Rainer Siegele for operating the μ-PIXE facility, and Gaelle Ng Kam Chuen for technical assistance. This work was supported by Australian Research Council and the Australian Institute of Nuclear Science and Engineering [AINGRA09073].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alison C. Monsant or Caixian Tang.

Additional information

Responsible Editor: Fangjie Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monsant, A.C., Wang, Y. & Tang, C. Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). Plant Soil 336, 391–404 (2010). https://doi.org/10.1007/s11104-010-0490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0490-3

Keywords

Navigation