Skip to main content
Log in

Root respiration and its relation to nutrient contents in soil and root and EVI among 8 ecosystems, northern China

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Root respiration is a critical and uncertain component of ecosystem carbon budgets. We assessed whether variation in root respiration at a reference temperature were associated with that of root and soil nutrient contents and enhanced vegetation index (EVI) among 8 ecosystems, including three forests, two shrublands, two meadow grasslands, and one meadow in a forest-steppe ecotone in northern China. Mass specific root respiration was positively related to root nitrogen content when data from all the different classes of root diameter were pooled. Area specific root respiration increased with soil available nitrogen through increasing fine root biomass. Beside the effect of soil or root nutrient contents, mass specific respiration of fine roots followed EVI patterns, suggesting that root respiration was strongly dependent on photosynthesis. A simple respiration–EVI relationship may provide a convenient way to estimate root respiration and has potential applications in quantitative spatial extrapolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ammann C, Flechard CR, Leifeld J, Neftell A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. Agric Ecosyst Environ 121:5–20

    Article  CAS  Google Scholar 

  • Atkinson LJ, Hellicar MA, Fitter AH, Atkin OK (2007) Impacts of temperature on the relationship between respiration and nitrogen concentration in roots: an analysis of scaling relationships, Q10 values and thermal acclimation ratios. New Phytol 173:110–120

    Article  CAS  PubMed  Google Scholar 

  • Bahn M, Knapp M, Garajova Z, Pfahringer N, Cernusca A (2006) Root respiration in temperate mountain grasslands differing in land use. Global Change Biol 12:995–1006

    Article  Google Scholar 

  • Bahn M, Schmitt M, Siegwolf R, Richrer A, Brüggemann N (2009) Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol 182:451–460

    Article  CAS  PubMed  Google Scholar 

  • Battaglia M, Sands P, White D, Mummery D (2004) Cabala: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. Forest Ecol Manag 193:251–282

    Article  Google Scholar 

  • Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–393

    Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572

    Article  CAS  Google Scholar 

  • Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard forest. Forest Ecol Manag 196:43–56

    Article  Google Scholar 

  • Bradley RL, Fyles JW (1995) Growth of paper birch (Betula papyrifera) seedling increases soil available C and microbial acquisition of soil nutrients. Soil Biol Biochem 27:1565–1571

    Article  CAS  Google Scholar 

  • Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forest. Oecologia 125:389–399

    Article  Google Scholar 

  • Burton AJ, Pregitzer KS, Ruess RW, Hendrick RL, Allen MF (2002) Root respiration in North American forest: effects of nitrogen concentration and temperature across biomes. Oecologia 131:559–568

    Article  Google Scholar 

  • Burton AJ, Melilo JM, Frey SD (2008) Adjustments of forest ecosystem root respiration as temperature warms. J Integr Plant Biol 50:1467–1483

    Article  PubMed  Google Scholar 

  • Butnor JR, Johnsen KH, Oren R, Katul GG (2003) Reduction of forest floor respiration by fertilization on both carbon dioxide enriched and reference 17-year-old loblolly pine stands. Global Change Biol 9:849–861

    Article  Google Scholar 

  • Chapin FS III, Vitousek PM, Cleve KV (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58

    Article  Google Scholar 

  • Comas LH, Eissenstat DM (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  CAS  PubMed  Google Scholar 

  • Craine FM, Wedin DA (2002) Determinants of growing season soil CO2 flux in a Minnesota grassland. Biogeochemistry 59:303–313

    Article  CAS  Google Scholar 

  • Desrochers A, Landhausser SM, Lieffers VJ (2002) Coarse and fine respiration in aspen Populus tremuloides. Tree Physiol 22:725–732

    PubMed  Google Scholar 

  • Drake JE, Stoy PC, Jackson RB, Delucia EH (2008) Fine-root respiration in a loblolly pine (Pinus taeda L) forest exposed to elevated CO2 and N fertilization. Plant Cell Environ 31:1663–1672

    Article  CAS  PubMed  Google Scholar 

  • Falster DS, Warton DI, Wright IJ (2006) SMATR: standardized major axis tests and routines, ver2.0. http://www.bio.mq.edu.au/ecology/SMATR/

  • Giardina GP, Binkley D, Ryan MG, Fownes JH, Senock RS (2004) Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia 139:545–550

    Article  PubMed  Google Scholar 

  • Gordon WS, Jackson RB (2000) Nutrient concentration in fine roots. Ecology 81:275–280

    Article  Google Scholar 

  • Hanson WC (1950) The photometric determination of phosphorus in fertilizers using the phosphovanado-molybdate complex. J Sci Food Agric 1:172–173

    Article  CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Haynes BE, Gower ST (1995) Belowground carbon allocation in unfertilized and fertilized plantations in northern Wisconsin. Tree Physiol 15:317–325

    PubMed  Google Scholar 

  • Heinemeyer A, Hartley IP, Evans SP, Carreira JA, Fuente DL, Ineson P (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ecotomycorrhizas. Global Change Biol 13:1786–1797

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Högberg P, Högberg MN, Göttlicher SG et al (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    PubMed  Google Scholar 

  • Högberg P, Singh B, Löfvenius MO, Nordgren A (2009) Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. Forest Ecol Manag 257:1764–1767

    Article  Google Scholar 

  • Huete AR, Didan K, Shimabukuro YE, Ratana P, Saleska SR, Hutyra LR, Yang WZ, Remani RR, Myneni R (2006) Amazon rainforest green-up with sunlight in dry season. Geophys Res Lett 33:L06405. doi:10.1029/2005GL025583

    Article  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine roots biomass, surface area and nutrient contents. Proc Natl Acad Sci USA 94:7362–7366

    Article  CAS  PubMed  Google Scholar 

  • Jones SK, Rees RM, Skiba UM, Ball BC (2005) Greenhouse gas emissions from a managed grassland. Global Planet Change 47:201–211

    Article  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Holmes WE, Schmidt K (2005) Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. Oecologia 146:318–328

    Article  CAS  PubMed  Google Scholar 

  • King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006) Plant respiration in a warmer world. Science 312:536–537

    Article  CAS  PubMed  Google Scholar 

  • Kohout M, Read J (2006) Instantaneous photosynthetic responses to temperature of deciduous and evergreen Nothofagus species. Aust J Bot 54:249–259

    Article  Google Scholar 

  • Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925

    Article  CAS  Google Scholar 

  • Lambers H, Nagel OW, Jeroen JGM, van Arendonk J (1995) The control of biomass partitioning in plants from “favorable” and “stressful” environments: a role for gibberellins and cytokinins. Bulg J Plant Physiol 21:24–32

    CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer-Verlag, New York

    Google Scholar 

  • Maier CA, Kress LW (2000) Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can J For Res 30:347–359

    Article  Google Scholar 

  • Marsden C, Nouvellon Y, Bou ATM, Saint-Andre L, Jourdan C, Kinana A, Epron D (2008) Two independent estimations of stand-level root respiration on clonal Eucalyptus stands in Congo: up scaling of direct measurements on roots versus the trenched-plot technique. New Phytol 177:676–687

    Article  CAS  PubMed  Google Scholar 

  • Moyano FE, Kutsch WL, Schulze ED (2007) Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biol Biochem 39:843–853

    Article  CAS  Google Scholar 

  • Moyano FE, Kutsch WL, Rebmann C (2008) Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agric For Meteorol 148:135–143

    Article  Google Scholar 

  • Noguchi K, Terashima I (2006) Responses of spinach leaf mitochondria to low N availability. Plant Cell Environ 29:710–719

    Article  CAS  PubMed  Google Scholar 

  • Olsson P, Linder S, Giesler R, Högberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biol 11:1745–1753. doi:10.1111/j.1365-2486.2005.01033.x

    Article  Google Scholar 

  • Ostertag R (2001) Effects of nitrogen and phosphorous availability on fine-root dynamics in Hawaiian Montane Forests. Ecology 82:485–499

    Article  Google Scholar 

  • Phillips RP, Fahey TJ (2007) Fertilization effects on fine root biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils. New Phytol 176:655–664

    Article  CAS  PubMed  Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    PubMed  Google Scholar 

  • Rahman AF, Sims DA, Cordova VD, El-Masri BZ (2005) Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys Res Lett 32:L19404. doi:10.1029/2005GL024127

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado JL (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol Lett 11:793–801

    Article  PubMed  Google Scholar 

  • Retzlaff WA, Handest JA, O’ Malley DM, McKeand SE, Topa MA (2001) Whole-tree biomass and carbon allocation of juvenile trees of loblolly pine (Pinus taeda): influence of genetics and fertilization. Can J For Res 31:960–970

    Article  CAS  Google Scholar 

  • Rodeghiero M, Cescatti A (2006) Indirect partitioning of soil respiration in a series of evergreen forest ecosystems. Plant Soil 284:7–22

    Article  CAS  Google Scholar 

  • Ryan MG, Hubbard RM, Pongracic S, Raison RJ, Mcmurtrie RE (1996) Foliage, fine-root, woody-tissue and stand respiration in Pinus radiate in relation to nitrogen status. Tree Physiol 16:333–343

    PubMed  Google Scholar 

  • Schindlbacher A, Zechmeister-Boltenstern S, Jandl R (2009) Carbon losses due to soil warming: Do autotrophic and heterotrophic soil respiration respond equally? Global Change Biol 15:901–913

    Article  Google Scholar 

  • Sims DA, Rahman AF, Cordova VD et al (2006) On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J Geophys Res 111:G04015. doi:10.1029/2006JG000162

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9:161–185

    Article  Google Scholar 

  • Subke J, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Global Change Biol 12:921–943

    Article  Google Scholar 

  • Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol 167:493–508

    Article  CAS  PubMed  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB, Zytkowiak R (2008) Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in Pinus banksiana across wide-ranging sites and populations. Global Change Biol 14:782–797

    Article  Google Scholar 

  • Treseder K, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forest. Ecology 82:946–954

    Article  Google Scholar 

  • Verburg PSJ, Arnone JA, Obrist D, Schorran DE, Evans R, Leroux-swarthout D, Johnson DW, Luo Y, Coleman JS (2004) Net ecosystem exchange in two experimental grassland ecosystems. Global Change Biol 10:498–508

    Article  Google Scholar 

  • Vose JM, Ryan MG (2002) Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. Global Change Biol 8:182–193

    Article  Google Scholar 

  • Walters MB, Reich PB (2000) Trade-offs in low-light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlings. Funct Ecol 14:155–165

    Article  Google Scholar 

  • Wang W, Feng J, Oikawa T (2009) Contribution of root and microbial respiration to soil CO2 efflux and their environmental controls in a humid temperate grassland of Japan. Pedosphere 19:31–39

    Article  CAS  Google Scholar 

  • Wardlow BD, Egbert SL, Kastens JH (2007) Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens Environ 108:290–310

    Article  Google Scholar 

  • Warton DI, Wright DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornellssen JHC, Diemer M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Xiao XM, Zhang QY, Saleska S, Hutyra L, Camargo PD, Wofsy S, Frolking S, Boles S, Keller M, Moore B III (2005) Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sens Environ 94:105–122

    Article  Google Scholar 

  • Zogg GP, Zak DR, Burton AJ, Pregitzer KS (1996) Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiol 16:719–725

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project Nos. 30870408, 30670342, and 90711002). We thank Z. F. Liu for his help with data analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Responsible Editor: Tjeerd Bouma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(a) C (%), (b) N (%) and (c) P (%) contents (means ± S.D.) for roots with diameters of 0–2 mm (blank), 2–5 mm (left diagonal) and >5 mm (right diagonal) across different ecosystems. P1, P2, P3 are 12-, 23-, and 39-year-old P. sylvestris; L1, L2, L3 are 12-, 22-, and 42-year old L. principis-rupprechtii; B1, MB, RB, M1, M2 and M are 46-year-old B. platyphylla, M. baccata, R. bella; meadow grassland 1, meadow grassland 2 and meadow. (DOC 38 kb)

Fig. S2

(a) Soil organic C (SOC) (%), (b) soil total N (STN) (%), (c) soil available N (mg kg−1) and (d) soil total P (STP) (%) contents across different ecosystems. Values are means ± S.D. P1, P2, P3 are 12-, 23-, and 39-year-old P. sylvestris; L1, L2, L3 are 12-, 22-, and 42-year old L. principis-rupprechtii; B1, MB, RB, M1, M2 and M are 46-year-old B. platyphylla, M. baccata, R. bella; meadow grassland 1, meadow grassland 2 and meadow. (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Peng, S. & Fang, J. Root respiration and its relation to nutrient contents in soil and root and EVI among 8 ecosystems, northern China. Plant Soil 333, 391–401 (2010). https://doi.org/10.1007/s11104-010-0354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0354-x

Keywords

Navigation