Skip to main content
Log in

Belowground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

We studied fine roots and ectomycorrhizas in relation to aboveground tree and stand characteristics in five mixed Betula pendula Roth, Picea abies (L.) H. Karst., and Pinus sylvestris L. stands in Southern Finland. The stands formed gradients of developmental stage (15-, 30-, and 50-year-old stands) in the stands of medium fertility, and of site fertility in the young stands (30-year-old fertile, medium fertile, and least fertile stands). The biomass of the external hyphae of ectomycorrhizas (ECM) was the highest, and the diversity of the fungal community the lowest, in the most fertile stand. The vertical distributions of fine roots of the three tree species were mostly overlapping, indicating high inter-specific belowground competition in the stands. We did not find any clear trends in the fine root biomass (FRB) or length across the stand developmental stages. The FRB of the conifers varied with site fertility, whereas in B. pendula it was almost constant. In contrast to the conifers, the specific root length (SRL) of B. pendula clearly increased from the most fertile to the least fertile stand. This indicates differences in the primary nutrient acquisition strategy between conifers and B. pendula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Assman E (1970) The principles of forest yield study: studies in the organic production, structure, increment and yield of forest stands. Pergamon, Oxford

    Google Scholar 

  • Aspelmeier S, Leuschner C (2006) Genotypic variation in drought response of silver birch (Betula pendula Roth): leaf and root morphology and carbon partitioning. Trees 20:42–52

    Article  Google Scholar 

  • Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J For Res 29:260–273

    Article  Google Scholar 

  • Bauhus J, Khanna PK, Menden N (2000) Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Can J For Res 30:1886–1894

    Article  Google Scholar 

  • Bergqvist G (1999) Wood volume yield and stand structure in Norway spruce understorey depending on birch shelterwood density. For Ecol Manage 122:221–229

    Article  Google Scholar 

  • Bledsoe CS, Atkinson D (1991) Measuring nutrient uptake by tree roots. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC, Boston, pp 207–224

    Google Scholar 

  • Bolte A, Villanueva I (2006) Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur J For Res 125:15–26

    Google Scholar 

  • Brandtberg PO, Lundkvist H, Bengtsson J (2000) Changes in forest-floor chemistry caused by a birch admixture in Norway spruce stands. For Ecol Manage 130:253–264

    Article  Google Scholar 

  • Büttner V, Leuschner C (1994) Spatial and temporal patterns of root abundance in a mixed oak-beech forest. For Ecol Manage 70:11–21

    Article  Google Scholar 

  • Cajander AK (1949) Forest types and their significance. Acta For Fenn 56:1–69

    Google Scholar 

  • Chen W, Zhang Q, Cihlar J, Bauhaus J, Price DT (2004) Estimating fine-root biomass and production of boreal and cool temperate forests using aboveground measurements: a new approach. Plant Soil 265:31–46

    Article  CAS  Google Scholar 

  • Curt T, Prévosto B (2003) Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant Soil 255:265–279

    Article  CAS  Google Scholar 

  • Eissenstat DM (1992) Cost and benefits of constructing roots of small diameter. J Plant Nutr 1:763–782

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Fiedler HJ, Hunger W, Zant R (1963) Untersuchungen über die Bodendurchwurzelung der Fichte. Archiv Forstwes 12:1214–1223

    Google Scholar 

  • Finér L, Messier C, De Grandpré L (1997) Fine-root dynamics in mixed boreal conifer-broad-leafed forest stands at different successional stages after fire. Can J For Res 27:304–314

    Google Scholar 

  • Finér L, Helmisaari H-S, Lõhmus K, Majdi H, Brunner I, Borja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen M-R, Ohashi M, Oleksyn J, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Godbold D, Fritz H-W, Jentschke G, Meesenburg H, Rademacher P (2003) Root turnover and root necromass accumulation of Norway spruce (Picea abies) are affected by soil acidity. Tree Physiol 23:915–921

    PubMed  Google Scholar 

  • Grime JP (2002) Plant strategies, vegetation processes and ecosystem properties. Wiley, Chichester

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, Oxford

    Google Scholar 

  • Hedh J, Wallander H, Erland S (2008) Ectomycorrhizal mycelial species composition in apatite amended and non-amended mesh bags buried in a phosphorus-poor spruce forest. Mycol Res 112:681–688

    Article  CAS  PubMed  Google Scholar 

  • Helmisaari H-S, Makkonen K, Kellomäki S, Valtonen E, Mälkönen E (2002) Below- and aboveground biomass, production and nitrogen use in Scots pine stands in eastern Finland. For Ecol Manage 165:317–326

    Article  Google Scholar 

  • Helmisaari H-S, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol 27:1493–1504

    CAS  PubMed  Google Scholar 

  • Hendricks CMA, Bianchi FJJA (1995) Root density and biomass in pure and mixed forest stands of Douglas-fir and Beech. Netherl J Agric Sci 43:321–331

    Google Scholar 

  • Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD, Sims SE (2006) Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytol 171:179–186

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Wallander H (2006) Integrating actomycorrhizal fungi into quantitative frameworks of forest carbon and nitrogen cycling. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge Univ. Press, pp 98–128

  • Jose S, Williams R, Zamora D (2006) Belowground ecological interactions in mixed-species forest plantations. For Ecol Manage 233:231–239

    Article  Google Scholar 

  • Kalela EK (1937) Tutkimuksia kuusi-harmaaleppä-sekametsiköiden kehityksestä. Acta For Fenn 44:1–179

    Google Scholar 

  • Kalliokoski T, Nygren P, Sievänen R (2008) Coarse root architecture of three boreal tree species growing in mixed stands. Silva Fenn 42(2):189–210

    Google Scholar 

  • Kelty MJ (2006) The role of species mixtures in plantation forestry. For Ecol Manage 233:195–204

    Article  Google Scholar 

  • Keyes MR, Grier CC (1981) Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can J For Res 11:599–605

    Article  Google Scholar 

  • Koide RT, Shumway DL, Xu B, Sharda JN (2007) On temporal partitioning of a community of ectomycorrhizal fungi. 174: 420–429

  • Kõljalg U, Larsson K-L, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824

    Article  CAS  PubMed  Google Scholar 

  • Korkama T, Fritze H, Pakkanen A, Pennanen T (2007) Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173:798–807

    Article  CAS  PubMed  Google Scholar 

  • Lyford WH (1980) Development of the root system of northern red oak (Quercus rubra L.). Harv For Pap 21

  • Majdi H, Persson H (1995) A study on fine-root dynamics in reponse to nutrient applications in a Norway spruce stand using the minirhizotron technique. Z Pflanzenernaehr Bodenkd 158:429–433

    Article  CAS  Google Scholar 

  • Majdi H, Viebke C-G (2004) Effects of fertilization with Dolomite Lime + PK or wood ash on root distribution and morphology in a Norway spruce stand in Southwest Sweden. For Sci 50:802–809

    Google Scholar 

  • Majdi H, Truus L, Johansson U, Nylund J-E, Wallander H (2008) Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. For Ecol Manage 255:2109–2117

    Article  Google Scholar 

  • Makkonen K, Helmisaari H-S (1998) Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. For Ecol Manage 102:283–290

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, version 5. MjM Software Design, Gleneden Beach

  • Meinen C (2008) Fine root dynamics in broad-leaved deciduous forest stands differing in tree species diversity. Dissertation, University of Göttingen

  • Meyer FH (1967) Feinwurzelverteilung bei Waldbäumen in Abhängigkeit vom Substrat. Forstarchiv 38:286–290

    Google Scholar 

  • Mustajärvi K, Merilä P, Derome J, Lindroos A-J, Helmisaari H-S, Nöjd P, Ukonmaanaho L (2008) Fluxes of dissolved organic and inorganic nitrogen in relation to stand characters and latitude in Scots pine and Norway spruce stands in Finland. Boreal Environ Res 13(Suppl. B):3–21

    Google Scholar 

  • Nilsson LO, Giesler R, Bååth E, Wallander H (2005) Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytol 165:613–622

    Article  PubMed  Google Scholar 

  • Näsholm T, Persson J (2001) Plant acquisition of organic nitrogen in boreal forests. Physiol Plant 111:419–426

    Article  PubMed  Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. Update edition. Wiley, New York

    Google Scholar 

  • Ostonen I, Lõhmus K, Helmisaari H-S, Truu J, Meel S (2007a) Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol 27:1627–1634

    Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007b) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

    Google Scholar 

  • Palatova E, Mauer O (2001) Mutual relations of mountain ash, beech and spruce root systems in the mixed mountain forest. Ekol-Bratisl 20(Suppl. 1):79–91

    Google Scholar 

  • Pennanen T, Liski J, Bååth E, Kitunen V, Uotila J, Westman CJ, Fritze H (1999) Structure of microbial communities in coniferous soils in relation to site fertility and stand development stage. Microb Ecol 38:168–179

    Article  PubMed  Google Scholar 

  • Pennanen T, Caul S, Daniell TJ, Griffiths BS, Ritz K, Wheatley RE (2004) Community-level responses of metabolically-active soil microorganisms to the quantity and quality of substrate inputs. Soil Biol and Biochem 36:841–848

    Article  CAS  Google Scholar 

  • Persson HA (1983) The distribution and productivity of fine roots in boreal forests. Plant Soil 71:87–101

    Article  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Potila H, Wallander H, Sarjala T (2009) Growth of ectomycorrhizal fungi in drained peatland forests with variable P and K availability. Plant Soil 316:139–150

    Article  CAS  Google Scholar 

  • Reich PB, Tjoelker MG, Walters MB, Vanderklein DW, Buschena C (1998) Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct Ecol 12:327–338

    Article  Google Scholar 

  • Repola J, Ojansuu R, Kukkola M (2007) Biomass functions for Scots pine, Norway spruce and birch in Finland. Working papers of the Finnish Forest Research Institute 53. p 28.

  • Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870

    Article  Google Scholar 

  • Rust S, Savill PS (2000) The root system of Fraxinus excelsior and Fagus sylvatica and their competitive relationships. Forestry 5:499–508

    Article  Google Scholar 

  • Sandhage-Hoffmann A, Zech W (1993) Dynamik und Element-gehalte von Fichten-wurzeln in Kalkgesteinböden am Wank (Bayerishe Kalkalpen). Z. Pflanzenernäehr Bodenk 156:181–190

    Article  Google Scholar 

  • Schmid I (2002) The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech. Basic Appl Ecol 3:339–346

    Article  Google Scholar 

  • Schmid I, Kazda M (2001) Root distribution of Norway spruce in monospecific and mixed stands on different soils. For Ecol Manag 159:37–47

    Article  Google Scholar 

  • Tamminen P (1991) Kangasmaan ravinnetunnusten ilmaiseminen ja viljavuuden alueellinen vaihtelu Etelä-Suomessa. Summary: Expression of soil nutrient status and regional variation in soil fertility of forested sites in southern Finland. Folia For 777. p 40

  • Toljander JF, Eberhardt U, Toljander YK, Leslie RP, Taylor AFS (2006) Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in boreal forest. New Phytol 170:873–884

    Article  CAS  PubMed  Google Scholar 

  • Vainio J, Korhonen K, Hantula J (1998) Genetic variation in Phlebia gigantea as detected with random amplified microsatellite (RAMS) markers. Mycol Res 102:187–192

    Article  Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge

    Google Scholar 

  • Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and site fertility in southern Finland. Tree Physiol 12:823–830

    Google Scholar 

  • Vanninen P, Ylitalo H, Sievänen R, Mäkelä A (1996) Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10:231–238

    Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Keyes MR (1983) Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in Western Washington, as suggested by fine-root input. Ecol Monogr 53:139–157

    Article  Google Scholar 

  • Wallander H (2006) External mycorrhizal mycelia—the importance of quantification in natural ecosystems. New Phytol 171:240–242

    Article  PubMed  Google Scholar 

  • Wallander H, Thelin G (2008) The stimulating effect of apatite on ectomycorrhizal growth diminishes after PK fertilization. Soil Biol Biochem 40:2517–2522

    Article  CAS  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760

    Article  CAS  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfaud DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Yin X, Perry JA, Dixon RK (1989) Fine-root dynamics and biomass distribution in a Quercus ecosystem following harvesting. For Ecol Manage 27:159–177

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of Pekka Välikangas, Reijo Hautajärvi, Pasi Aatsinki, and Juha Kemppainen in organizing and supervising the pretreatment of the fine root samples in the Salla Office of the Rovaniemi Research Unit of the Finnish Forest Research Institute. We thank Brasilia Decouba, Eva Komanická, Minna Sinkkonen, Mirva Sandberg, Peter Hohti, Roman Tenz, Szilveszter Csorba, Tatiana Kaletova, and the staff of Salla Office for skilful laboratory assistance. We also thank Tarja Lehto for constructive comments on the manuscript. The study was funded by the Academy of Finland (Project 210875).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomo Kalliokoski.

Additional information

Responsible Editor: Angela Hodge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalliokoski, T., Pennanen, T., Nygren, P. et al. Belowground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients. Plant Soil 330, 73–89 (2010). https://doi.org/10.1007/s11104-009-0177-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0177-9

Keywords

Navigation