Skip to main content

Advertisement

Log in

Growth of ectomycorrhizal fungi in drained peatland forests with variable P and K availability

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate how the biomass of extramatrical mycorrhizal mycelia (EMM) is influenced by the addition of different phosphorus (P), potassium (K) and PK fertilizers in peatland forests with variable P and K availability. Four fertilizers were used: apatite, biotite, Rauta-PK™ (apatite and ferrosulphate) and a test fertilizer (50% apatite and 50% recycled iron phosphate). Forest plots with four different types of nutrient balance (deficient P and deficient K, deficient P and sufficient K, sufficient P and deficient K, and sufficient P and sufficient K) were studied. The effects on EMM biomass and ectomycorrhizal (EM) biomass in roots were estimated by ergosterol and phospholipid fatty acid (PLFA) analysis using in-growth mesh bags. Nutrients and rare-earth elements in EM roots surrounding the mesh bags were quantified and used as indicators of nutrient transport by the EMM in the mesh bags. The biomass of EMM was enhanced by P, K and PK deficiency of the trees, and EM fungal biomass in the roots was increased by P deficiency. The test fertilizer enhanced EMM biomass in all the plots studied, whereas the other fertilizers did not have any significant effect. No significant interactions between the P and K availability of host and mycelial fertilizer response could be detected. Deficiency of P or K or both in needles did not affect the concentrations of rare-earth elements in the tree roots. Earlier results from laboratory experiments have shown reduced carbon allocation to EM fungi under K deficiency, but this was not the case in these mature forests. Instead, we observed increased EMM biomass in response to both P and K deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahti E (1983) Fertilizer-induced leaching of phosphorus and potassium on peatlands drained for forestry. Comm Inst For Fenn 111:1–20

    Google Scholar 

  • Bååth E, Anderson T-H (2003) Comparison of soil fungal/bacteria ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963 doi:10.1016/S0038-0717(03)00154-8

    Article  Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409 doi:10.1111/j.1469-8137.1995.tb01834.x

    Article  CAS  Google Scholar 

  • Ekblad A, Wallander H, Carlsson R, Huss-Danell K (1995) Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol 131:443–451 doi:10.1111/j.1469-8137.1995.tb03081.x

    Article  Google Scholar 

  • Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169:205–214 doi:10.1007/BF00029330

    Article  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acids analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65 doi:10.1007/BF00384433

    Article  Google Scholar 

  • Hagerberg D, Wallander H (2002) The impact of forest residue removal and wood ash amendment on the growth of the ectomycorrhizal external mycelium. FEMS Microbiol Ecol 39:139–146 doi:10.1111/j.1574-6941.2002.tb00915.x

    Article  CAS  Google Scholar 

  • Hagerberg D, Thelin G, Wallander H (2003) The production of ectomycorrhizal mycelium in forests: Relation between forest nutrient status and local mineral sources. Plant Soil 252:279–290 doi:10.1023/A:1024719607740

    Article  CAS  Google Scholar 

  • Hedh J, Wallander H, Erland S (2008) Ectomycorrhizal mycelial species composition in response to apatite amendment in mesh bags buried in a P-poor spruce forest. Mycol Res 112:681–688 doi:10.1016/j.mycres.2007.11.008

    Article  PubMed  CAS  Google Scholar 

  • Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD, Sims SE (2006) Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytol 171:179–186 doi:10.1111/j.1469-8137.2006.01742.x

    Article  PubMed  CAS  Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K et al (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264

    Article  Google Scholar 

  • Kaunisto S (1989) Jatkolannoituksen vaikutus puuston kasvuun vanhalla ojitusalueella (Summary: Effect of refertilization on tree growth in an old drainage area). Folia For 724:1–15

    Google Scholar 

  • Kaunisto S, Paavilainen E (1988) Nutrient stores in old drainage areas and growth of stands. Comm Inst For Fenn 145:1–39

    Google Scholar 

  • Kenttämies K (1981) The effects on water quality of forest drainage and fertilization in peatlands. In: Water research institute publication No. 43. Finland National Board of Waters, Helsinki, pp. 24–31

  • Korkama T, Fritze H, Pakkanen A, Pennanen T (2007) Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173:798–807 doi:10.1111/j.1469-8137.2006.01957.x

    Article  PubMed  CAS  Google Scholar 

  • Laiho R, Sallantaus T, Laine J (1999) The effect of forestry drainage on vertical distributions of major plant nutrients in peat soils. Plant Soil 207:169–181 doi:10.1023/A:1026470212735

    Article  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254 doi:10.1016/S0169-5347(01)02122-X

    Article  PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD (2001) Nitrogen and ectomycorrhizal fungal communities: what we know, what we need to know. New Phytol 149:154–158 doi:10.1046/j.1469-8137.2001.00042-2.x

    Article  Google Scholar 

  • Marilley L, Aragano M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136 doi:10.1016/S0929-1393(99)00028-1

    Article  Google Scholar 

  • Nieminen M, Ahti E (1993) Leaching of nutrients from an ombrotrophic peatland area after fertilizer application on snow. Folia For 814:1–22

    Google Scholar 

  • Nilsson L-O, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416 doi:10.1046/j.1469-8137.2003.00728.x

    Article  Google Scholar 

  • Nylund JE, Wallander H (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomass. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol. 24. Academic, London, pp 77–88

    Chapter  Google Scholar 

  • Olsson PA, Wallander H (1998) Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol Ecol 27:195–205 doi:10.1111/j.1574-6941.1998.tb00537.x

    Article  CAS  Google Scholar 

  • Parrent JL, Vilgalys R (2007) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol 176:164–174 doi:10.1111/j.1469-8137.2007.02155.x

    Article  PubMed  Google Scholar 

  • Päivänen J, Paavilainen E (1996) Forestry on peatlands. In: Vasander H (ed) Peatland in Finland. Gummerus Printing, Helsinki, pp 72–83

    Google Scholar 

  • Puska R, Ylinen P (2002) Recycled iron phosphates in the fertiliser industry. In: Hahn HH, Hoffmann E, Odegaard H (eds) Chemical water and wastewater treatment VII. IWA, London, pp 363–368

    Google Scholar 

  • Rautjärvi H, Kaunisto S, Tolonen T (2004) The effect of repeated fertilizations on volume growth and needle nutrient concentrations of Scots pine (Pinus sylvestris L.) on a drained pine mire. Suo 55:21–32

    Google Scholar 

  • Reinikainen A, Veijalainen H, Nousiainen H (1998) Puiden ravinnepuutokset—metsänkasvattajan ravinneopas. The Finnish For Res Inst Res Pap 688:1–44

    Google Scholar 

  • Saura M (2002) Apatiittilannoituksen vaikutus valumaveden laatuun Parkanon Liesinevalla. Suometsien kasvatuksen ja käytön teemapäivät, 26.-27.9.2001, Joensuu. Finnish For Res Inst Res Pap 832:43–47

    Google Scholar 

  • Sundh I, Nilsson M, Borgå P (1997) Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles. Appl Environ Microbiol 63:1476–1482

    PubMed  CAS  Google Scholar 

  • Tornberg K, Bååth E, Olsson S (2003) Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biol Fertil Soils 37:190–197

    CAS  Google Scholar 

  • Wallander H (2000a) Use of strontium isotopes and foliar K content to estimate weathering of biotite induced by pine seedlings colonised by ectomycorrhizal fungi from two different soils. Plant Soil 222:215–229 doi:10.1023/A:1004756221985

    Article  CAS  Google Scholar 

  • Wallander H (2000b) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218:249–256 doi:10.1023/A:1014936217105

    Article  CAS  Google Scholar 

  • Wallander H, Nylund JE (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of Pinus sylvestris L. New Phytol 120:495–503 doi:10.1111/j.1469-8137.1992.tb01798.x

    Article  CAS  Google Scholar 

  • Wallander H, Thelin G (2008) The stimulating effect of apatite on ectomycorrhizal growth diminish after PK fertilization. Soil Biol Biochem (in press) doi:10.1016/j.soilbio.2008.06.011

  • Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760 doi:10.1046/j.0028-646x.2001.00199.x

    Article  CAS  Google Scholar 

  • van Schöll L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814

    Article  PubMed  Google Scholar 

  • Vesk PA, Ashford AE, Markovina A-L, Allaway WG (2000) Apoplasmic barriers and their significance in the exodermis and sheath of Eucalyptus pilularisPisolithus tinctorius. New Phytol 145:333–346 doi:10.1046/j.1469-8137.2000.00583.x

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms Eeva Pihlajaviita, Ms Helena Haavanlammi, Ms Anneli Käenmäki, Ms Anneli Nuijanmaa, Ms Aulikki Hamari, Mr Markku Nikola and Mr Lauri Hirvisaari for technical assistance. Prof. E. Hobbie and other anonymous referees are greatly acknowledged for valuable comments on the paper. This work was supported by the Kemira Foundation, The Finnish Graduate School in Forest Sciences, The Finnish Cultural and the Metsämiesten Säätiö Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannamaria Potila.

Additional information

Responsible Editor: Erik A. Hobbie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potila, H., Wallander, H. & Sarjala, T. Growth of ectomycorrhizal fungi in drained peatland forests with variable P and K availability. Plant Soil 316, 139–150 (2009). https://doi.org/10.1007/s11104-008-9766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9766-2

Keywords

Navigation