Skip to main content
Log in

Combined effects of loose wood ash and carbon on inorganic N and P, key organisms, and the growth of Norway spruce seedlings and grasses in a pot experiment

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The effects of wood ash on the growth of Norway spruce seedlings and grasses, nitrogen and phosphorus leaching, and soil fauna were investigated at two levels of carbon availability in a greenhouse experiment simulating harvested boreal forest. While sucrose-C amendment reduced grass biomass regardless of wood ash by 88%, the shoot and root biomass of spruce seedlings increased by 38% and 370%, respectively. Despite the large variation in above-ground biomass, C addition did not alter the concentration of water extractable ammonium nitrogen in humus, but it counteracted the ash-induced increase in soil phosphate concentration. C addition reduced the proportion of bacterial-feeding nematodes in the nematode community. Wood ash reduced enchytraeid size, but their biomass was not affected. Carbon treatment was crucial for enchytraeids probably because amended pots were moister than controls. Small compensatory grass growth following harvest implied that soil fauna made little nitrogen available to plants in one growing season. The results support the hypothesis that C availability may be an important determinant of nutrient retention, and has the potential to control plant competition in intensively harvested forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ågren GI, Bosatta E (1996) Theoretical ecosystem ecology, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Andersson P, Berggren D (2005) Amino acids, total organic and inorganic nitrogen in forest floor soil solution at low and high nitrogen input. Water Air Soil Pollut 162:369–384

    Article  CAS  Google Scholar 

  • Andresen LC, Jonasson S, Ström L, Michelsen A (2008) A uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem. Plant Soil. doi:10.1007/s11104-008-9700-7

  • Arvidsson H, Lundkvist H (2002) Needle chemistry in young Norway spruce stands after application of crushed wood ash. Plant Soil 238:159–174 doi:10.1023/A:1014252521538

    Article  CAS  Google Scholar 

  • Arvidsson H, Vestin T, Lundkvist H (2002) Effects of crushed wood ash application on ground vegetation in young Norway spruce stands. For Ecol Manage 161:75–87

    Article  Google Scholar 

  • Bååth E, Frostegård Å, Pennanen T, Fritze H (1995) Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol Biochem 27:229–240 doi:10.1016/0038-0717(94)00140-V

    Article  Google Scholar 

  • Bowman WD, Steltzer H, Rosenstiel TN, Cleveland CC, Meier CL (2004) Litter effects of two co-occurring alpine species on plant growth, microbial activity and immobilization of nitrogen. Oikos 104:336–344 doi:10.1111/j.0030-1299.2004.12721.x

    Article  Google Scholar 

  • Buchmann N, Gebauer G, Schulze E-D (1996) Partitioning of 15N-labeled ammonium and nitrate among soil, litter, below- and above-ground biomass of trees and understory in a 15-year-old Picea abies plantation. Biogeochemistry 33:1–23 doi:10.1007/BF00000967

    Article  Google Scholar 

  • Clarholm M (1993) Granulated wood ash and a ‘N-free’ fertilizer to a forest soil—effects on P availability. For Ecol Manage 66:127–136

    Article  Google Scholar 

  • Clarke N, Wu Y, Strand LT (2007) Dissolved organic carbon concentrations in four Norway spruce stands of different ages. Plant Soil 299:275–285 doi:10.1007/s11104-007-9384-4

    Article  CAS  Google Scholar 

  • Clemmesen KE, Sorensen PL, Michelsen A, Jonasson S, Ström L (2008) Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia 155:771–783 doi:10.1007/s00442-008-0962-9

    Article  Google Scholar 

  • Cole L, Staddon PL, Sleep D, Bardgett RD (2004) Soil animals influence microbial abundance, but not plant–microbial competition for soil organic nitrogen. Funct Ecol 18:631–640 doi:10.1111/j.0269-8463.2004.00894.x

    Article  Google Scholar 

  • Dahlgren RA, Driscoll CT (1994) The effects of whole-tree clear-cutting on soil processes at the Hubbard Brook Experimental Forest, New Hampshire, USA. Plant Soil 158:239–262 doi:10.1007/BF00009499

    Article  CAS  Google Scholar 

  • Dehlin H, Nilsson M-C, Wardle DA (2006) Aboveground and belowground responses to quality and heterogeneity of organic inputs to the boreal forest. Oecologia 150:108–118 doi:10.1007/s00442-006-0501-5

    Article  PubMed  Google Scholar 

  • Dunn RM, Mikola J, Bol R, Bardgett RD (2006) Influence of microbial activity on plant–microbial competition for organic and inorganic nitrogen. Plant Soil 289:321–334 doi:10.1007/s11104-006-9142-z

    Article  CAS  Google Scholar 

  • Ekblad A, Nordgren A (2002) Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability? Plant Soil 242:115–122 doi:10.1023/A:1019698108838

    Article  CAS  Google Scholar 

  • Engelking B, Flessa H, Joergensen RG (2008) Formation and use of microbial residues after adding sugarcane sucrose to a heated soil devoid of soil organic matter. Soil Biol Biochem 40:97–105 doi:10.1016/j.soilbio.2007.07.009

    Article  CAS  Google Scholar 

  • Eriksson H (1998) Short-term effects of granulated wood ash on forest soil chemistry in SW and NE Sweden. Scand J For Res Suppl 2:43–55

    Google Scholar 

  • Eschen R, Müller-Schärer H, Schaffner U (2006) Soil carbon addition affects plant growth in a species-specific way. J Appl Ecol 43:35–42 doi:10.1111/j.1365-2664.2005.01110.x

    Article  CAS  Google Scholar 

  • Eschen R, Mortimer SR, Lawson CS, Edwards AR, Brook AJ, Igual JM, Hedlund K, Schaffner U (2007) Carbon addition alters vegetation composition on ex-arable fields. J Appl Ecol 44:95–104 doi:10.1111/j.1365-2664.2006.01240.x

    Article  CAS  Google Scholar 

  • Giesler R, Petersson T, Högberg P (2002) Phosphorus limitation in boreal forests: effects of Aluminum and Iron accumulation in the humus layer. Ecosystems (N Y, Print) 5:300–314 doi:10.1007/s10021-001-0073-5

    Article  CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56 doi:10.1016/S0929-1393(96)00126-6

    Article  Google Scholar 

  • Hakkila P, Kalaja H (1983) Puu- ja kuorituhkan palauttamisen tekniikka. Folia Forestalia 552:1–37

    Google Scholar 

  • Hannam KD, Quideau SA, Kishchuk BE, Oh S-W, Wasylishen RE (2005) Forest-floor chemical properties are altered by clear-cutting in boreal mixedwood forest stands dominated by trembling aspen and white spruce. Can J Res 35:2457–2468 doi:10.1139/x05-140

    Article  CAS  Google Scholar 

  • Helmisaari H-S, Saarsalmi A, Kukkola M (2008) Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland. Plant Soil. doi:10.1007/s11104-008-9711-4

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299 doi:10.1038/35095041

    Article  PubMed  CAS  Google Scholar 

  • Hyvönen R, Huhta V (1989) Effects of lime, ash and nitrogen fertilizers on nematode populations in Scots Pine forest soil. Pedobiologia (Jena) 33:129–143

    Google Scholar 

  • Jackson LE, Schimel JP, Firestone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–415 doi:10.1016/0038-0717(89)90152-1

    Article  Google Scholar 

  • Kardol P, Van der Wal A, Bezemer TM, de Boer W, Duyts H, Holtkamp R, Van der Putten W (2008) Restoration of species-rich grasslands on ex-arable land: Seed addition outweighs soil fertility reduction. Biol Conserv 141:2208–2217 doi:10.1016/j.biocon.2008.06.011

    Article  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143 doi:10.1016/S0169-5347(97)01001-X

    Article  Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383

    Article  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59–61 doi:10.1038/385059a0

    Article  CAS  Google Scholar 

  • Lamontagne S, Carignan R, D’Arcy P, Prairie YT, Paré D (2000) Element export in runoff from eastern Canadian Boreal Shield drainage basins following forest harvesting and wildfires. Can J Fish Aquat Sci 57(Suppl 2):118–128 doi:10.1139/cjfas-57-S2-118

    Article  CAS  Google Scholar 

  • Lepistö A, Andersson L, Arheimer B, Sundblad K (1995) Influence of catchment characteristics, forestry activities and deposition on nitrogen export from small forested catchments. Water Air Soil Pollut 84:81–102 doi:10.1007/BF00479590

    Article  Google Scholar 

  • Levula T, Saarsalmi A, Rantavaara A (2000) Effects of ash fertilization and prescribed burning on macronutrient, heavy metal, sulphur and 137Cs concentrations in lingonberries (Vaccinium vitis-idaea). For Ecol Manage 126:269–279

    Article  Google Scholar 

  • Liiri M, Setälä H, Haimi J, Pennanen T, Fritze H (2001) Influence of Cognettia sphagnetorum (Enchytraeidae) on birch growth and microbial activity, composition and biomass in soil with or without wood ash. Biol Fertil Soils 34:185–195 doi:10.1007/s003740100397

    Article  CAS  Google Scholar 

  • Liiri M, Ilmarinen K, Setälä H (2002a) The significance of Cognettia sphagnetorum (Enchytraeidae) on nitrogen availability and plant growth in wood ash-treated soil. Plant Soil 246:31–39 doi:10.1023/A:1021515313890

    Article  Google Scholar 

  • Liiri M, Setälä H, Haimi J, Pennanen T, Fritze H (2002b) Relationship between soil microarthropod species diversity and plant growth does not change when the system is disturbed. Oikos 96:137–149 doi:10.1034/j.1600-0706.2002.960115.x

    Article  Google Scholar 

  • Liiri M, Setälä H, Haimi J, Pennanen T, Fritze H (2002c) Soil processes are not influenced by the functional complexity of soil decomposer food webs under disturbance. Soil Biol Biochem 34:1009–1020 doi:10.1016/S0038-0717(02)00034-2

    Article  CAS  Google Scholar 

  • Lindberg N, Engtsson JB, Persson T (2002) Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. J Appl Ecol 39:924–936 doi:10.1046/j.1365-2664.2002.00769.x

    Article  Google Scholar 

  • Lindo Z, Visser S (2003) Microbial biomass, nitrogen and phosphorus mineralization, and mesofauna in boreal conifer and deciduous forest floors following partial and clear-cut harvesting. Can J Res 33:1610–1620 doi:10.1139/x03-080

    Article  CAS  Google Scholar 

  • Lundborg A (1997) Reducing the nitrogen load: whole-tree harvesting. Ambio 26:387–393

    Google Scholar 

  • Lundkvist H (1982) Population dynamics of Cognettia sphagnetorum (Enchytraeidae) in a Scots pine forest soil in Central Sweden. Pedobiologia (Jena) 23:21–41

    Google Scholar 

  • Makulec G (1983) Enchytraeidae (Oligochaeta) of forest ecosystems. I. Density, biomass and production. Ekol Polska 31:9–56

    Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Nieminen JK (2008a) Linking food webs to ecosystem processes: piecewise linear models of soil microcosms. Ecol Modell 217:87–94 doi:10.1016/j.ecolmodel.2008.06.010

    Article  Google Scholar 

  • Nieminen JK (2008b) Labile carbon alleviates wood ash effects on soil fauna. Soil Biol Biochem doi:10.1016/j.soilbio.2008.07.025

  • Nieminen JK, Setälä H (2001) Influence of carbon and nutrient additions on a decomposer food chain and the growth of pine seedlings in microcosms. Appl Soil Ecol 17:189–197 doi:10.1016/S0929-1393(01)00139-1

    Article  Google Scholar 

  • Nieminen M, Piirainen S, Moilanen M (2005) Release of mineral nutrients and heavy metals from wood and peat ash fertilizers: Field studies in Finnish forest soils. Scand J For Res 20:146–153 doi:10.1080/02827580510008293

    Article  Google Scholar 

  • O’Connor FB (1957) An ecological study of the enchytraeid worm population of a coniferous forest soil. Oikos 8:161–199 doi:10.2307/3564998

    Article  Google Scholar 

  • Olsson BA, Staaf H (1995) Influence of harvesting intensity of logging residues on ground vegetation in coniferous forests. J Appl Ecol 32:640–654 doi:10.2307/2404659

    Article  Google Scholar 

  • Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580–593 doi:10.1890/05-0383

    Article  PubMed  Google Scholar 

  • Paschke MW, McLendon T, Redente EF (2000) Nitrogen availability and old-field succession in a shortgrass steppe. Ecosystems (N Y, Print) 3:144–158 doi:10.1007/s100210000016

    Article  CAS  Google Scholar 

  • Persson J, Gardeström P, Näsholm T (2006) Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. J Exp Bot 57:2651–2659 doi:10.1093/jxb/erl028

    Article  PubMed  CAS  Google Scholar 

  • Pitman RM (2006) Wood ash use in forestry—a review of the environmental impacts. Forestry 79:563–588 doi:10.1093/forestry/cpl041

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492 doi:10.1046/j.1469-8137.2003.00704.x

    Article  Google Scholar 

  • Ritz K, Griffiths BS (1987) Effects of carbon and nitrate additions to soil upon leaching of nitrate, microbial predators and nitrogen uptake by plants. Plant Soil 102:229–237 doi:10.1007/BF02370708

    Article  CAS  Google Scholar 

  • Ruess L, Schmidt IK, Michelsen A, Jonasson S (2002) Responses of nematode species composition to factorial addition of carbon, fertiliser, bactericide and fungicide at two sub-arctic sites. Nematology 4:527–539 doi:10.1163/156854102760290509

    Article  CAS  Google Scholar 

  • Sandnes A, Eldhuset TD, Wollebaek G (2005) Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol Biochem 37:259–269 doi:10.1016/j.soilbio.2004.07.036

    Article  CAS  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602 doi:10.1890/03-8002

    Article  Google Scholar 

  • Schmidt IK, Michelsen A, Jonasson S (1997) Effects of labile carbon on nutrient partitioning between an arctic graminoid and microbes. Oecologia 112:557–565 doi:10.1007/s004420050345

    Article  Google Scholar 

  • Siira-Pietikäinen A, Pietikäinen J, Fritze H, Haimi J (2001) Short-term responses of soil decomposer communities to forest management: clear felling versus alternative forest harvesting methods. Can J Res 31:88–99 doi:10.1139/cjfr-31-1-88

    Article  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater marine and terrestrial ecosystems. Environ Pollut 100:179–196 doi:10.1016/S0269-7491(99)00091-3

    Article  PubMed  CAS  Google Scholar 

  • Smolander A, Kitunen V, Priha O, Mälkönen E (1995) Nitrogen transformations in limed and nitrogen fertilized soil in Norway spruce stands. Plant Soil 172:107–115 doi:10.1007/BF00020864

    Article  CAS  Google Scholar 

  • Smolander A, Kitunen V, Mälkönen E (2001) Dissolved soil organic nitrogen and carbon in a Norway spruce stand and an adjacent clear-cut. Biol Fertil Soils 33:190–196 doi:10.1007/s003740000307

    Article  CAS  Google Scholar 

  • Sparling GP, Williams BL (1986) Microbial biomass in organic soils: estimation of biomass C, and effect of glucose or cellulose amendments on the amounts of N and P released by fumigation. Soil Biol Biochem 18:507–513 doi:10.1016/0038-0717(86)90008-8

    Article  CAS  Google Scholar 

  • Stadler B, Michalzik B (1998) Linking aphid honeydew, throughfall, and forest floor solution chemistry of Norway spruce. Ecol Lett 1:13–16 doi:10.1046/j.1461-0248.1998.00006.x

    Article  Google Scholar 

  • Szili-Kovács T, Török K, Tilston EM, Hopkins DW (2007) Promoting microbial immobilization of soil nitrogen during restoration of abandoned agricultural fields by organic additions. Biol Fertil Soils 43:823–828 doi:10.1007/s00374-007-0182-1

    Article  Google Scholar 

  • Tamm C-O (1991) Nitrogen in terrestrial ecosystems. Springer, Berlin

    Google Scholar 

  • Väänänen R, Kenttämies K, Nieminen M, Ilvesniemi H (2007) Phosphorus retention properties of forest humus layer in buffer zones and clear-cut areas in southern Finland. Boreal Environ Res 12:601–609

    Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2007) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:1–15

    Google Scholar 

  • van Hees PAW, Johansson E, Jones DL (2008) Dynamics of simple carbon compounds in two forest soils as revealed by soil solution concentrations and biodegradation kinetics. Plant Soil 310:11–23 doi:10.1007/s11104-008-9623-3

    Article  CAS  Google Scholar 

  • Wallander H, Arnebrandt K, Östrand F, Kårén O (1997) Uptake of 15N-labelled alanine, ammonium and nitrate in Pinus sylvestris L. Ectomycorrhiza growing in forest soil treated with nitrogen, sulphur or lime. Plant Soil 195:329–338 doi:10.1023/A:1004280401423

    Article  CAS  Google Scholar 

  • Wardle DA, Walker LR, Bardgett R (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513 doi:10.1126/science.1098778

    Article  PubMed  CAS  Google Scholar 

  • Zak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM (1990) The vernal dam: plant–microbe competition for nitrogen in northern hardwood forests. Ecology 71:651–656 doi:10.2307/1940319

    Article  Google Scholar 

  • Zink TA, Allen MF (1998) The effects of organic amendments on the restoration of a disturbed coastal sage scrub habitat. Restor Ecol 6:52–58 doi:10.1046/j.1526-100x.1998.00617.x

    Article  Google Scholar 

  • Zogg GP, Zak DR, Pregitzer KS, Burton J (2000) Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest. Ecology 81:1858–1866

    Article  Google Scholar 

Download references

Acknowledgements

I thank M. Boucelham, J. Haimi and H. Setälä for technical advice, assistance and discussion, Runar Bäckström foundation for financial support, and two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jouni K. Nieminen.

Additional information

Responsible Editor: Wim van der Putten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieminen, J.K. Combined effects of loose wood ash and carbon on inorganic N and P, key organisms, and the growth of Norway spruce seedlings and grasses in a pot experiment. Plant Soil 317, 155–165 (2009). https://doi.org/10.1007/s11104-008-9797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9797-8

Keywords

Navigation