Skip to main content
Log in

Effect of soil type and soybean genotype on fungal community in soybean rhizosphere during reproductive growth stages

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Fungal communities in soybean rhizosphere from reproductive growth stages R1 (beginning bloom) to R8 (full maturity) were studied based on the polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) banding patterns of partial rDNA internal transcribed spacer regions (ITS1) and sequencing methods. Pot experiment subjecting three soybean genotypes grown in two soils (Mollisol and Alfisol) indicated that the soil type was the major factor in shaping the fungal communities in the soybean rhizosphere. Field experiment was conducted in an Alfisol field with three soybean genotypes, and both pot and field experiments showed that rhizosphere fungal communities shifted with growth stages, and more diversity of communities was found in early reproductive growth stages than later stages. No major difference among fungal communities of three soybean genotypes was detected at individual growth stage. BLAST search of ITS sequence data generated from excised DGGE bands showed that fungi belonging to Ascomycetes and Basidiomycetes predominantly inhabited in the soybean rhizosphere. In addition, a few bands had low similarity with database sequences inferred that unknown fungal groups existed in soybean rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson IC, Campbell CD, Prosser JI (2003) Diversity of fungi in organic soils under a moorland-Scots pine (Pinus sylvestris L.) gradient. Environ Microbiol 5:1121–1132 doi:10.1046/j.1462-2920.2003.00522.x

    Article  PubMed  Google Scholar 

  • Atkinson D, Watson CA (2000) The beneficial rhizosphere: a dynamic entity. Appl Soil Ecol 15:99–104 doi:10.1016/S0929-1393(00)00084-6

    Article  Google Scholar 

  • Bastias BA, Huang ZQ, Blumfield T, Xu Z, Cairney JWG (2006) Influence of repeated prescribed burning on the soil fungal community in an eastern Australian wet sclerophyll forest. Soil Biol Biochem 38:3492–3501 doi:10.1016/j.soilbio.2006.06.007

    Article  CAS  Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22:4356–4360 doi:10.1146/annurev.es.22.110191.002521

    Article  Google Scholar 

  • Buchenauer H (1998) Biological control of soil-borne diseases by rhizobacteria. J Plant Dis Prot 105:329–348

    Google Scholar 

  • Buyer JS, Roberts DP, Russek-Cohen E (1999) Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol 45:138–144 doi:10.1139/cjm-45-2-138

    Article  CAS  Google Scholar 

  • Buyer JS, Roberts DP, Russek-Cohen E (2002) Soil and plant effects on microbial community structure. Can J Microbiol 48:955–964 doi:10.1139/w02-095

    Article  PubMed  CAS  Google Scholar 

  • Cahyani VR, Matsuya K, Asakawa S, Kimura M (2004) Succession and phylogenetic profile of methanogenic archaeal communities during the composting process of rice straw estimated by PCR-DGGE analysis. Soil Sci Plant Nutr 50:555–563

    CAS  Google Scholar 

  • Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249 doi:10.1111/j.1574-6941.2005.00026.x

    Article  PubMed  CAS  Google Scholar 

  • Dalmastri C, Chiarini L, Cantale C, Bevivino A, Tabacchioni S (1999) Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microb Ecol 38:273–284 doi:10.1007/s002489900177

    Article  PubMed  Google Scholar 

  • De Ridder-Duine AS, Kowalchuk GA, Gunnewiek PJAK, Smant W, van Veen JA, de Boer W (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349–357 doi:10.1016/j.soilbio.2004.08.005

    Article  CAS  Google Scholar 

  • Duineveld B, Kowalchuck GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178 doi:10.1128/AEM.67.1.172-178.2001

    Article  PubMed  CAS  Google Scholar 

  • Ebersberger D, Wermbter N, Niklaus PA, Kandeler E (2004) Effect of long term CO2 enrichment on microbial community structure in calcareous grass land. Plant Soil 264:313–323 doi:10.1023/B:PLSO.0000047768.89268.8c

    Article  CAS  Google Scholar 

  • Garbeva P, Veen JAV, Elsas JDV (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270 doi:10.1146/annurev.phyto.42.012604.135455

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Mol Ecol 2:113–118 doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  PubMed  CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    PubMed  Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809 doi:10.1128/AEM.69.3.1800-1809.2003

    Article  PubMed  CAS  Google Scholar 

  • Gomes NCM, Heuer H, Schönfeld J, Costa R, Hagler-Mendonca L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180 doi:10.1023/A:1010350406708

    Article  CAS  Google Scholar 

  • Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Hagler-Mendonca L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766 doi:10.1128/AEM.69.7.3758-3766.2003

    Article  PubMed  CAS  Google Scholar 

  • Graham MH, Haynes RJ (2005) Catabolic diversity of soil microbial communities under sugarcane and other land uses estimated by Biolog and substrate-induced respiration methods. Appl Soil Ecol 29:155–164 doi:10.1016/j.apsoil.2004.11.002

    Article  Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378 doi:10.1016/S0038-0717(97)00124-7

    Article  CAS  Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopthology 87:888–891 doi:10.1094/PHYTO.1997.87.9.888

    Article  CAS  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432 doi:10.1017/S0953756201004725

    Article  Google Scholar 

  • Hiltner L (1904) Uber neuere erfarungen und problem auf dem gebiet der bodenbakteriologie und unter besonderer berucksichtigung der grundung und brache. Arbeitent Dtsch Landwirtschafts-Gesellschaft 98:59–78

    Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520 doi:10.1023/A:1020565523615

    Article  PubMed  Google Scholar 

  • Kowalchuk GA, Stienstra AW, Heilig GHJ, Stephen JR, Woldendorp JW (2000) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2:99–110 doi:10.1046/j.1462-2920.2000.00080.x

    Article  PubMed  CAS  Google Scholar 

  • Liu XB, Herbert SJ (2002) Fifteen years of research examining cultivation of continuous soybean in Northeast China. Field Crops Res 79:1–7 doi:10.1016/S0378-4290(02)00042-4

    Article  Google Scholar 

  • Liu XB, Jin J, Wang GH, Herbert SJ (2008) soybean yield physiology and development of high-yielding practices in Northeat China. Field Crops Res 105:157–171 doi:10.1016/j.fcr.2007.09.003

    Article  Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208 doi:10.1023/B:PLSO.0000035569.80747.c5

    Article  CAS  Google Scholar 

  • Marschner P, Neumann G, Kania A, Weiskopf L, Liebere R (2002) Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246:167–174 doi:10.1023/A:1020663909890

    Article  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445 doi:10.1016/S0038-0717(01)00052-9

    Article  CAS  Google Scholar 

  • Matsuyama T, Nakajima Y, Matsuya K, Ikenaga M, Asakawa S, Kimura M (2007) Bacterial community in plant residues in a Japanese paddy field estimated by RFLP and DGGE analyses. Soil Biol Biochem 39:463–472 doi:10.1016/j.soilbio.2006.08.016

    Article  CAS  Google Scholar 

  • Nazih N, Finlay-Moore O, Hartel PG, Fuhrmann JJ (2001) Whole soil fatty acid methyl ester (FAME) profiles of early soybean rhizosphere as affected by temperature and matric water potential. Soil Biol Biochem 33:693–696 doi:10.1016/S0038-0717(00)00197-8

    Article  CAS  Google Scholar 

  • Nelson EB (1990) Exudate molecules initiating fungal responses to seeds and roots. Plant Soil 129:61–73 doi:10.1007/BF00011692

    Article  CAS  Google Scholar 

  • Rengel Z (2002) Genetic control of root exudation. Plant Soil 245:59–70 doi:10.1023/A:1020646011229

    Article  CAS  Google Scholar 

  • Rovira AD (1959) Root excretions in relation to the rhizosphere effect. IV. Influence of plant species, age of plant, light, temperature, and calcium nutrition on exudation. Plant Soil 11:53–64 doi:10.1007/BF01394753

    Article  CAS  Google Scholar 

  • Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155 doi:10.1016/j.apsoil.2007.01.004

    Article  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751 doi:10.1128/AEM.67.10.4742-4751.2001

    Article  PubMed  CAS  Google Scholar 

  • Sylvia DM, Chellemi DO (2001) Interactions among root-inhabiting fungi and their implications for biological control of root pathogens. Adv Agron 73:1–33 doi:10.1016/S0065-2113(01)73003-9

    Article  Google Scholar 

  • Watanabe T, Asakawa S, Nakamura A, Nagaoka K, Kimura M (2004) DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiol Lett 232:153–163 doi:10.1016/S0378-1097(04)00045-X

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  • White TJ, Buns TD, Lee S, Taylor J (1990) Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: Innis MA, Gefland DH, Sninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854 doi:10.1128/AEM.67.12.5849-5854.2001

    Article  PubMed  CAS  Google Scholar 

  • Xin H, Ma H (1987) Occurrence and control for soybean root rot. Soybean Sci 6:189–196 in Chinese

    Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  PubMed  CAS  Google Scholar 

  • Yao H, Jiao X, Wu F (2006) Effect of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant Soil 284:195–203 doi:10.1007/s11104-006-0023-2

    Article  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tieduje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Professor Makoto Kimura, Nagoya University Japan, for his comments and critical review of this manuscript. This research was supported by grants from Science and Technology Bureau of Heilongjiang Province (GA06B101-3-1) and National Natural Science Foundation of China (40671099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghua Wang.

Additional information

Responsible Editor: Petra Marschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Xu, Y., Jin, J. et al. Effect of soil type and soybean genotype on fungal community in soybean rhizosphere during reproductive growth stages. Plant Soil 317, 135–144 (2009). https://doi.org/10.1007/s11104-008-9794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9794-y

Keywords

Navigation