Skip to main content

Advertisement

Log in

Soil–vegetation relationships in cerrados under different fire frequencies

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Fire is an important ecological factor that structures savannas, such as the cerrado, by selecting plant species and altering soil nutrient content. In Emas National Park, central Brazil, we compared soils under three different fire regimes and their relationship to the cerrado species they support. We collected 25 soil and vegetation samples at each site. We found differences in soil characteristics (p < 0.05), with fertility and fire frequency positively related: in the annually burned site we found higher values of organic matter, nitrogen, and clay, whereas in the protected site we detected lower values of pH and higher values of aluminum. We also observed differences in plant community structure, with distinct floristic compositions in each site. Floristic composition was more related to sand proportion (intra-set correlation = 0.834). Different fire frequencies increase environmental heterogeneity and beta diversity in the Brazilian cerrado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

OM:

organic matter

SB:

sum of bases

CEC:

cation exchange capacity

V:

base saturation

m:

aluminum saturation

CCA:

canonical correspondence analysis

References

  • Amorim PK, Batalha MA (2007) Soil–vegetation relationships in hyperseasonal cerrado, seasonal cerrado and wet grassland in Emas National Park (central Brazil). Acta Oecol 32:319–327

    Article  Google Scholar 

  • Anderson MJ (2003) NPMANOVA: a Fortran computer program for non-parametric multivariate analysis of variance (for any two-factor Anova design) using permutation tests. Department of Statistics, University of Auckland, New Zealand

    Google Scholar 

  • Batalha MA, Mantovani W (1999) Chaves de identificação das espécies vegetais vasculares baseada em caracteres vegetativos para a ARIE Cerrado Pé-de-Gigante (Santa Rita do Passa Quatro, SP). Rev Inst Florest 11:137–158

    Google Scholar 

  • Batalha MA, Martins FR (2002) The vascular flora of the cerrado in Emas National Park (central Brazil). SIDA 20:295–312

    Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    Article  PubMed  CAS  Google Scholar 

  • Bowker MA, Belnap J, Rosentreter R, Graham B (2004) Wildfire-resistant biological soil crusts and fire-induced loss of soil stability in Palouse prairies, USA. Appl Soil Ecol 26:41–52

    Article  Google Scholar 

  • Brye KR (2006) Soil physiochemical changes following 12 years of annual burning in a humid-subtropical tallgrass prairie: a hypothesis. Acta Oecol 30:407–413

    Article  Google Scholar 

  • Camargo-Ricalde SL, Dhillion SS (2003) Endemic Mimosa species can serve as mycorrhizal “resource islands” within semiarid communities of the Tehuacán-Cuicatlán Valley, Mexico. Mycorrhiza 13:129–136

    Article  PubMed  Google Scholar 

  • Casals P, Romanya J, Vallejo VR (2005) Short-term nitrogen fixation by legume seedlings and resprouts after fire in Mediterranean old-fields. Biogeochemistry 76:477–501

    Article  Google Scholar 

  • Coutinho LM (1990) Fire in the ecology of the Brazilian cerrado. In: Goldammer JG (ed) Fire in the tropical biota. Springer, Berlin, pp 81–103

    Google Scholar 

  • Doerr SH, Cerdà A (2005) Fire effects on soil system functioning: new insights and future challenges. Int J Wildland Fire 14:339–342

    Article  Google Scholar 

  • Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Dubbin WE, Penn MG, Hodson ME (2006) Edaphic influences on plant community adaptation in the Chiquibul forest of Belize. Geoderma 131:76–88

    Article  CAS  Google Scholar 

  • Embrapa (1997) Manual de métodos de análise do solo. Embrapa, Rio de Janeiro

    Google Scholar 

  • França H, Ramos-Neto MB, Setzer A (2007) O fogo no Parque Nacional das Emas. Biodiversidade, vol. 27. Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter – a review. Environ Int 30:855–870

    Article  PubMed  CAS  Google Scholar 

  • Goodland R (1971) Oligotrofismo e alumínio no cerrado. In: Ferri MG (ed) III Simpósio sobre o Cerrado. Edgar Blücher, São Paulo. pp 44–60

  • Gottsberger G, Silberbauer-Gottsberger I (2006) Life in the cerrado: a South American tropical seasonal vegetation, Vol 1: Origin, structure, dynamics and plant use. Reta, Ulm

  • Haridasan M (2000) Nutrição mineral de plantas nativas do cerrado. Rev Bras Fisiol Veg 12:54–64

    CAS  Google Scholar 

  • Hartnett DC, Potgieter AF, Wilson GWT (2004) Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. Afr J Ecol 42:328–337

    Article  Google Scholar 

  • Hoffman WA (1996) The effects of fire and cover on seedling establishment in a neotropical savanna. J Ecol 84:383–393

    Article  Google Scholar 

  • Hoffman WA (1998) Post-burn reproduction of woody plants in a neotropical savanna: the relative importance of sexual and vegetative reproduction. J Appl Ecol 35:422–433

    Article  Google Scholar 

  • Hoffman WA (2002) Direct and indirect effects of fire on radial growth of cerrado savanna trees. J Trop Ecol 18:137–142

    Article  Google Scholar 

  • Hubbert KR, Preisler HK, Wohlgemuth PM, Graham RC, Narog MG (2006) Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California, USA. Geoderma 130:284–298

    Article  Google Scholar 

  • Jongman RHG, Braak CJF, Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University, Cambridge

    Google Scholar 

  • Kennard DK, Gholz HL (2001) Effects of high- and low-intensity fires on soil properties and plant growth in a Bolivian dry forest. Plant Soil 234:119–129

    Article  CAS  Google Scholar 

  • Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118

    Article  CAS  Google Scholar 

  • Kovach (1999) Multivariate statistical package v.3.1. Kovach Computing Services, Anglesey

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer, New York

    Google Scholar 

  • Manly BFJ (1997) Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall, London

    Google Scholar 

  • Mantovani W, Leitão Filho HF, Martins FR (1985) Chave baseada em caracteres vegetativos para identificação de espécies lenhosas da Reserva Biológica de Moji Guacu, SP. Hoehnea 12:35–66

    Google Scholar 

  • Milberg P, Lamont BB, Perez-Fernandez MA (1999) Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecol 145:125–132

    Article  Google Scholar 

  • Montgomery RF, Askew GP (1983) Soils of tropical savannas. In: Goodall DW (ed) Ecosystems of the World – tropical savannas. Elsevier, Berlin, pp 63–77

    Google Scholar 

  • Müller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley and Sons, New York

    Google Scholar 

  • Nardoto GB, Bustamante MMC (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesquisa Agropecu Bras 38:955–962

    Google Scholar 

  • Neff JC, Harden JW, Gleixner G (2005) Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can J Res 35:2178–2187

    Article  CAS  Google Scholar 

  • Pivello-Pompéia VR, Coutinho LM (1992) Transfer of macro-nutrients to the atmosphere during experimental burnings in an open cerrado (Brazilian savanna). J Trop Ecol 8:487–497

    Article  Google Scholar 

  • Pivello VR, Shida CN, Meirelles ST (1999) Alien grasses in Brazilian savannas: a threat to the biodiversity. Biodivers Conserv 8:1281–1294

    Article  Google Scholar 

  • Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação de fertilidade de solos tropicais. Instituto Agronômico, Campinas

    Google Scholar 

  • Ramos-Neto MB, Pivello VR (2000) Lightning fires in a Brazilian savanna National Park: rethinking management strategies. Environ Manage 26:675–684

    Article  PubMed  Google Scholar 

  • Rhoades CC, Meier AJ, Rebertus AJ (2004) Soil properties in fire-consumed log burnout openings in a Missouri oak savanna. For Ecol Manag 192:277–284

    Article  Google Scholar 

  • Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil–vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, southeasthern Brazil. Plant Ecol 160:1–16

    Article  Google Scholar 

  • Scardua FP (2004) Plano de manejo do Parque Nacional das Emas. Ibama, Brasília

    Google Scholar 

  • Setterfield SA (2002) Seedling establishment in an Australian tropical savanna: effects of seed supply, soil disturbance and fire. J Appl Ecol 39:949–959

    Article  Google Scholar 

  • Silva FC (1999) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa, Brasília

    Google Scholar 

  • SMA Secretaria do Estado do Meio Ambiente (1997) Cerrado: bases para conservação e uso sustentável das áreas de cerrado do Estado de São Paulo. SMA, São Paulo

    Google Scholar 

  • Spera ST, Reatt A, Correia JR, Silva JCS (2000) Características físicas de um latossolo vermelho-escuro no cerrado de Planaltina, DF, submetido à ação do fogo. Pesquisa Agropecu Bras 35:1817–1824

    Google Scholar 

  • van Wilgen BW, Govender N, Biggs HC, Ntsala D, Funda XN (2004) Response of savanna fire regimes to changing fire-management policies in a large African national park. Conserv Biol 18:1533–1540

    Article  Google Scholar 

  • van de Vijver CADM, Poot P, Prins HHT (1999) Causes of increased nutrient concentrations in post-fire regrowth in an East African savanna. Plant Soil 214:173–185

    Article  Google Scholar 

  • Yong-Mei Z, Ning W, Guo-Yi Z, Wei-Kai B (2005) Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Appl Soil Ecol 30:215–225

    Article  Google Scholar 

  • Zar JH (1999) Biostatical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

We are grateful to CNPq, for the scholarships granted to both authors; to Fapesp, for financial support; to Ibama, for research permission; to Emas National Park staff, for logistical assistance; to R. Moreira, M.B. Ramos-Neto, and Oréades, for the ENP’s satellite images; to A.T. Fushita, for help in ENP’s fire history map; to P.K. Amorim, C.A. Casali, A.V.F. Jardim, P. Loyola, M. Maia, L.T. Manica, F.Q. Martins, M.V. Cianciaruso, I.A. Silva, L. Sims, for valuable help in field; to M.I.S. Lima, M.V. Cianciaruso and I.A. Silva, for suggestions on the manuscript; to UnB and Unicamp herbaria; and to C. Proença and J. Semir, for their assistance in species identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Muniz da Silva.

Additional information

Responsible Editor: Tibor Kalapos, Ph.D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, D.M., Batalha, M.A. Soil–vegetation relationships in cerrados under different fire frequencies. Plant Soil 311, 87–96 (2008). https://doi.org/10.1007/s11104-008-9660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9660-y

Keywords

Navigation