Skip to main content
Log in

Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

We examined the response of mycorrhizal fungi to free-air CO2 enrichment (FACE) and nitrogen (N) fertilization in a warm temperate forest to better understand potential influences over plant nutrient uptake and soil carbon (C) storage. In particular, we hypothesized that mycorrhizal fungi and glomalin would become more prevalent under elevated CO2 but decrease under N fertilization. In addition, we predicted that N fertilization would mitigate any positive effects of elevated CO2 on mycorrhizal abundance. Overall, we observed a 14% increase in ectomycorrhizal (ECM) root colonization under CO2 enrichment, which implies that elevated CO2 results in greater C investments in these fungi. Arbuscular mycorrhizal (AM) hyphal length and glomalin stocks did not respond substantially to CO2 enrichment, and effects of CO2 on AM root colonization varied by date. Nitrogen effects on AM fungi were not consistent with our hypothesis, as we found an increase in AM colonization under N fertilization. Lastly, neither glomalin concentrations nor ECM colonization responded significantly to N fertilization or to an N-by-CO2 interaction. A longer duration of N fertilization may be required to detect effects on these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen AS, Andrews JA, Finzi AC, Matamala R, Richter DD, Schlesinger WH (2000) Effects of free-air CO2 enrichment (FACE) on belowground processes in a Pinus taeda forest. Ecol Appl 10:437–448

    Google Scholar 

  • Andrews JA, Schlesinger WH (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Glob Biogeochem Cycles 15:149–162

    Article  CAS  Google Scholar 

  • Bentivenga SP, Hetrick BAD (1992) The effect of prairie management practices on mycorrhizal symbiosis. Mycologia 84:522–527

    Article  Google Scholar 

  • Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews JA, Schlesinger WH (2006) Long-term effects of free air CO2 enrichment (FACE) on soil respiration. Biogeochemistry 77:91–116

    Article  Google Scholar 

  • Bird SB, Herrick JE, Wander MM, Wright SF (2002) Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environ Pollut 116:445–455

    Article  PubMed  CAS  Google Scholar 

  • Bonfante-Fasolo P (1986) Anatomy and morphology of VA mycorrhizae. In: Powell C, Bagyaraj D (eds) VA mycorrhiza. CRC, Boca Raton, FL, pp 2–33

    Google Scholar 

  • Brundett M, Bougher M, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR, Canberra, Australia, p 374

    Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York, p 436

    Google Scholar 

  • Constable JVH, Bassirirad H, Lussenhop J, Zerihun A (2001) Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Tree Physiol 21:83–91

    PubMed  CAS  Google Scholar 

  • Cornwell WK, Bedford BL, Chapin CT (2001) Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. Am J Bot 88:1824–1829

    Article  Google Scholar 

  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH (1999) Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284:1177–1179

    Article  PubMed  CAS  Google Scholar 

  • Diaz S (1996) Effects of elevated [CO2] at the community level mediated by root symbionts. Plant Soil 187:309–320

    Article  CAS  Google Scholar 

  • Dodd JC, Boddington CL, Rodriguez A, Gonzalez-Chavez C, Mansur I (2000) Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function, and detection. Plant Soil 226:131–151

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Article  Google Scholar 

  • Ellis JR, Roder W, Mason SC (1992) Grain sorghum soybean rotation and fertilization influence on vesicular–arbuscular mycorrhizal fungi. Soil Sci Soc Am J 56:789–794

    Article  Google Scholar 

  • Eom AH, Hartnett DC, Wilson GWT, Figge DAH (1999) The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am Midl Nat 142:55–70

    Article  Google Scholar 

  • Finzi AC, Schlesinger WH (2003) Soil-nitrogen cycling in a pine forest exposed to 5 years of elevated carbon dioxide. Ecosystems 6:444–456

    Article  CAS  Google Scholar 

  • Finzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH (2002) The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132:567–578

    Article  Google Scholar 

  • Finzi AC, Moore DJP, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim HS, Matamala R, McCarthy HR, Oren R, Pippen JS, Schlesinger WH (2006a) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87:15–25

    Article  PubMed  Google Scholar 

  • Finzi AC, Sinsabaugh RL, Long TM, Osgood MP (2006b) Microbial community responses to atmospheric carbon dioxide enrichment in a warm-temperate forest. Ecosystems 9:215–226

    Article  CAS  Google Scholar 

  • George K, Norby RJ, Hamilton JG, DeLucia EH (2003) Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytol 160:511–522

    Article  Google Scholar 

  • Gorissen A (1996) Elevated CO2 evokes quantitative and qualitative changes in carbon dynamics in a plant/soil system: mechanisms and implications. Plant Soil 187:289–298

    Article  CAS  Google Scholar 

  • Grogan P, Chapin FS (2000) Nitrogen limitation of production in a Californian annual grassland: the contribution of arbuscular mycorrhizae. Biogeochemistry 49:37–51

    Article  CAS  Google Scholar 

  • Hodge A (1996) Impact of elevated CO2 on mycorrhizal associations and implications for plant growth. Biol Fertil Soils 23:388–398

    Article  CAS  Google Scholar 

  • Hutchinson TC, Watmough SA, Sager EPS, Karagatzides JD (1998) Effects of excess nitrogen deposition and soil acidification on sugar maple (Acer saccharum) in Ontario, Canada: an experimental study. Can J For Res 28:299–310

    Article  CAS  Google Scholar 

  • Ineson P, Cotrufo MF, Bol R, Harkness DD, Blum H (1996) Quantification of soil carbon inputs under elevated CO2: C3 plants in a C4 soil. Plant Soil 187:345–350

    Article  CAS  Google Scholar 

  • Johnson NC, Zak DR, Tilman D, Pfleger FL (1991) Dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oecologia 86:349–358

    Article  Google Scholar 

  • Kasurinen A, Helmisaari HS, Holopainen T (1999) The influence of elevated CO2 and O3 on fine roots and mycorrhizas of naturally growing young Scots pine trees during three exposure years. Glob Change Biol 5:771–780

    Article  Google Scholar 

  • Keeling CD, Whorf TP, Wahlen M, Vanderplicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670

    Article  CAS  Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF, Zak DR, Kubiske M, Pregitzer KS (1997) Soil fungal–arthropod responses to Populus tremuloides grown under enriched atmospheric CO2 under field conditions. Glob Change Biol 3:473–478

    Article  Google Scholar 

  • Klironomos JH, Ursic M, Rillig M, Allen MF (1998) Interspecific differences in the response of arbuscular mycorrhizal fungi to Artemisia tridentata grown under elevated CO2. New Phytol 138:599–605

    Article  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Article  Google Scholar 

  • Koske RE, Tessier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Am Newsl 34:59

    Google Scholar 

  • Lussenhop J, Treonis A, Curtis PS, Teeri JA, Vogel CS (1998) Response of soil biota to elevated atmospheric CO2 in poplar model systems. Oecologia 113:247–251

    Article  Google Scholar 

  • Lutgen ER, Muir-Clairmont D, Graham J, Rillig MC (2003) Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland. Plant Soil 257:71–83

    Article  CAS  Google Scholar 

  • Matamala R, Schlesinger WH (2000) Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Glob Change Biol 6:967–979

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mohan JE, Clark JS, Schlesinger WH (2007) Long-term CO2 enrichment of a forest ecosystem: implications for forest regeneration and succession. Ecol Appl 17:1198–1212

    Article  PubMed  Google Scholar 

  • Mosse B (1973) Plant growth responses to vesicular–arbuscular mycorrhizae: IV. In soil given additional phosphate. New Phytol 72:127–136

    Article  Google Scholar 

  • Norby RJ, O’Neill EG, Hood WG, Luxmoore RJ (1987) Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol 3:203–210

    PubMed  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    Article  PubMed  CAS  Google Scholar 

  • Parrent JL, Vilgalys R (2007) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol 176:164–174

    Article  PubMed  Google Scholar 

  • Parrent JL, Morris WF, Vilgalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87:2278–2287

    Article  PubMed  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego, p 340

    Google Scholar 

  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Oren R (in press) Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during five years of free-air CO2- enrichment (FACE). Global Change Biology

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot Rev Can Bot 82:1243–1263

    Article  CAS  Google Scholar 

  • Rey A, Barton CVM, Jarvis PG (1997) Belowground responses to increased atmospheric CO2 concentrations in birch (Betula pendula Roth.). In Impacts of global change on tree physiology and forest ecosystems: Proceedings of the International Conference on Impacts of Global Change on Tree Physiology and Forest Ecosystems, held 26–29 November 1996, Wageningen, The Netherlands, Mohren GMJ, Kramer K, Sabate S. Kluwer Academic, Dordrecht, pp 207–212

  • Rillig MC, Allen MF (1998) Arbuscular mycorrhizae of Gutierrezia sarothrae and elevated carbon dioxide: evidence for shifts in C allocation to and within the mycobiont. Soil Biol Biochem 30:2001–2008

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Allen MF, Field CB (1999) Long-term CO2 elevation affects soil structure of natural ecosystems. Nature 400:628

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Rillig MC, Maestre FT, Lamit LJ (2003) Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biol Biochem 35:1257–1260

    Article  CAS  Google Scholar 

  • Rosier CL, Hoye AT, Rillig MC (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 38:2205–2211

    Article  CAS  Google Scholar 

  • Schimel D, Enting IG, Heimann M, Wrigley TML, Raynaud D, Alves D, Siegenthaler U (1995) CO2 and the carbon cycle. In: Houghton JT, Meira Filho LG, Bruce J, Lee J, Callander BA, Haties E, Harris N, Maskell K (eds) Climate change 1994. Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, Cambridge, pp 39–71

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego, p 605

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York, p 887

    Google Scholar 

  • Springer CJ, Thomas RB (2007) Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment. Tree Physiol 27:25–32

    PubMed  CAS  Google Scholar 

  • St Clair SB, Lynch JP (2005) Base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. New Phytol 165:581–590

    Article  PubMed  CAS  Google Scholar 

  • Thiet RK, Boerner REJ (2007) Spatial patterns of ectomycorrhizal fungal inoculum in arbuscular mycorrhizal barrens communities: implications for controlling invasion by Pinus virginiana. Mycorrhiza 17:507–517

    Article  PubMed  Google Scholar 

  • Tingey DT, Johnson MG, Phillips DL, Storm MJ (1995) Effects of elevated CO2 and nitrogen on Ponderosa pine fine roots and associated fungal components. J Biogeogr 22:281–287

    Article  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Treseder KK (2005) Nutrient acquisition strategies of fungi and their relation to elevated atmospheric CO2. In: Dighton J, Oudemans P, White J (eds) The fungal community. Marcel Dekker, New York, pp 713–731

    Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Treseder KK, Cross A (2006) Global distributions of arbuscular mycorrhizal fungi. Ecosystems 9:305–316

    Article  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954

    Article  Google Scholar 

  • Treseder KK, Turner KM, Mack MC (2007) Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Glob Change Biol 13:78–88

    Article  Google Scholar 

  • van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM (2007) Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytol 176:175–183

    Article  PubMed  CAS  Google Scholar 

  • van Veen JA, Liljeroth E, Lekkerkerk LJA, van de Geijn SC (1991) Carbon fluxes in plant–soil systems at elevated atmospheric CO2 levels. Ecol Appl 2:175–181

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur. Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Walker RF, Geisinger DR, Johnson DW, Ball JT (1997) Elevated atmospheric CO2 and soil N fertility effects on growth, mycorrhizal colonization, and xylem water potential of juvenile ponderosa pine in a field soil. Plant Soil 195:25–36

    Article  CAS  Google Scholar 

  • Wang X (2007) Effects of species richness and elevated carbon dioxideon biomass accumulation: a synthesis using meta-analysis. Oecologia 152:595–605

    Article  PubMed  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Wright SF, Rillig MC, Nichols KA (2000) Glomalin: a soil protein important in carbon sequestration. Abstr Pap Am Chem Soc 220:70

    Google Scholar 

  • Wuest SB, Caesar-TonThat TC, Wright SF, Williams JD (2005) Organic matter addition, N, and residue burning effects on infiltration, biological, and physical properties of an intensively tilled silt-loam soil. Soil Tillage Res 84:154–167

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Finzi, S. Allison, R. Oren, S. Pritchard, Y. Erlitz, A. Majumder, and T. Poy for intellectual contributions and technical assistance. We are grateful to Duke University for access to the field sites. This work was supported by the Department of Energy (DE-FG02-95ER62083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria O. Garcia.

Additional information

Responsible Editor: Angela Hodge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, M.O., Ovasapyan, T., Greas, M. et al. Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant Soil 303, 301–310 (2008). https://doi.org/10.1007/s11104-007-9509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9509-9

Keywords

Navigation