Skip to main content

Advertisement

Log in

Increase in pH stimulates mineralization of ‘native’ organic carbon and nitrogen in naturally salt-affected sandy soils

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Large amounts of terrestrial organic C and N reserves lie in salt-affected environments, and their dynamics are not well understood. This study was conducted to investigate how the contents and dynamics of ‘native’ organic C and N in sandy soils under different plant species found in a salt-affected ecosystem were related to salinity and pH. Increasing soil pH was associated with significant decreases in total soil organic C and C/N ratio; particulate (0.05–2 mm) organic C, N and C/N; and the C/N ratio in mineral-associated (<0.05 mm) fraction. In addition, mineral-associated organic C and N significantly increased with an increase in clay content of sandy soils. During 90-day incubation, total CO2-C production per unit of soil organic C was dependent on pH [CO2-C production (g kg−1 organic C) = 22.5 pH – 119, R 2 = 0.79]. Similarly, increased pH was associated with increased release of mineral N from soils during 10-day incubation. Soil microbial biomass C and N were also positively related to pH. Metabolic quotient increased with an increase in soil pH, suggesting that increasing alkalinity in the salt-affected soil favoured the survival of a bacterial-dominated microbial community with low assimilation efficiency of organic C. As a result, increased CO2-C and mineral N were produced in alkaline saline soils (pH up to 10.0). This pH-stimulated mineralization of organic C and N mainly occurred in particulate but not in mineral-associated organic matter fractions. Our findings imply that, in addition to decreased plant productivity and the litter input, pH-stimulated mineralization of organic matter would also be responsible for a decreased amount of organic matter in alkaline salt-affected sandy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal AS, Singh BR, Kanehiro Y (1971) Ionic effect of salts on mineral nitrogen release in an allophonic soil. Soil Sci Soc Am Proc 35:454–457

    Article  CAS  Google Scholar 

  • Beltrán-Hernández RI, Coss-Muňoz E, Luna-Guido ML, Mercado-García F, Siebe C, Dendooven L (1999) Carbon and nitrogen dynamics in alkaline saline soil of the former Lake Texcoco (Mexico) as affected by application of sewage sludge. Eur J Soil Sci 50:601–608

    Article  Google Scholar 

  • Blakemore LC, Searle PL, Daly DK (1987) Methods for chemical analysis of soils. N Z, Soil Bur Sci Rep., 80 pp

  • Broadbent FE, Nakashima T (1971) Effect of added salts on nitrogen mineralization in three California soils. Soil Sci Soc Am Proc 35:457–460

    Article  CAS  Google Scholar 

  • Chandra S, Joshi HC, Pathak H, Jain MC, Kalra N (2002) Effect of potassium salts and distillery effluent on carbon mineralization. Bioresour Technol 83:255–257

    Article  PubMed  CAS  Google Scholar 

  • Chen G., Zhu H, Zhang Y (2003) Soil microbial activities and carbon and nitrogen fixation. Res Microbiol 154:393–398

    Article  PubMed  CAS  Google Scholar 

  • Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct Ecol 16:63–574

    Article  Google Scholar 

  • Crowley DE, Alvey SA (2002) Regulation of microbial processes by soil pH. In: Rengel Z (ed) Handbook of plant growth. pH as the master variable. Marcel Dekker, Inc, New York, USA, pp 351–382

    Google Scholar 

  • Dalal RC, Wang W, Robertson GP, Parton WJ (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Aust J Soil Res 41:165–195

    Article  CAS  Google Scholar 

  • Domènech R, Vilà M, Gesti J, Serrasolses I (2006) Neighbourhood association of Cortaderia selloana invasion, soil properties and plant community structure in Mediterranean coastal grasslands. Acta Oecol 29:171–177

    Article  Google Scholar 

  • Heilman P (1975) Effect of added salts on nitrogen release and nitrate levels in forest soils of the Washington coastal area. Soil Sci Soc Am Proc 39:778–782

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis, Part 1. Physical and mineralogical methods. American Society of Agronomy, Inc., Madison, Wisconsin, USA, pp 383–411

    Google Scholar 

  • Joergensen RG, Brookes PC (1990) Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biol Biochem 22:1023–1027

    Article  CAS  Google Scholar 

  • Kemmitt SJ, Wright D, Goulding KW T, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38:898–911

    Article  CAS  Google Scholar 

  • Kempers AJ, Luft AG (1988) Re-examination of the determination of environmental nitrate as nitrite by reduction with hydrazine. Analyst 113:1117–1120

    Article  PubMed  CAS  Google Scholar 

  • Khalil MI, Hossain MB, Schmidhalter U (2005) Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biol. Biochem 37:1507–1518

    Article  CAS  Google Scholar 

  • Kimble J, Cook T, Eswaran H (1990) Organic carbon on a volume basis in tropical and temperate soils. Transactions of the 14th International Congress of Soil Science, Kyoto, pp V248–V253

  • Kinnear PR, Gray CD (2000) SPSS for Windows made simple: release 10. Psychology Press, Hove, UK

    Google Scholar 

  • Konukcu F, Gowing JW, Rose DA (2006) Dry drainage: a sustainable solution to waterlogging and salinity problems in irrigation areas. Agr Water Manag 83:1–12

    Article  Google Scholar 

  • Laura RD (1974) Effects of neutral salts on C and N mineralization of organic matter in soil. Plant Soil 41:113–127

    Article  CAS  Google Scholar 

  • Laura RD (1976) Effects of alkali salts on C and N mineralization of organic matter in soil. Plant Soil 44:587–596

    Article  CAS  Google Scholar 

  • Lemenih M, Itanna F (2004) Soil carbon stocks and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia. Geoderma 123:177–188

    Article  CAS  Google Scholar 

  • Li X, Li F, Bhupinderpal-Singh, Cui Z, Rengel Z (2006a) Decomposition of maize straw in saline soil. Biol Fertil Soils 42:366–370

    Article  Google Scholar 

  • Li X, Li F, Ma Q, Cui Z (2006b) Interactions of NaCl and Na2SO4 on soil organic carbon mineralization after addition of maize straws. Soil Biol Biochem 38:2328–2335

    Article  CAS  Google Scholar 

  • Luna-Guido ML, Beltran-Hernandez RI, Dendooven L (2001) Dynamics of 14C-labelled glucose in alkaline saline soil. Soil Biol Biochem 33:707–719

    Article  CAS  Google Scholar 

  • Midwood AJ, Boutton TW (1998) Soil carbonate decomposition by acid has little effect on δ13 C organic matter. Soil Biol Biochem 30:1301–1307

    Article  CAS  Google Scholar 

  • Motavalli PP, Palm CA, Parton WJ, Elliott ET, Frey SD (1995) Soil pH and organic C dynamics in tropical forest soils: evidence from laboratory and simulation studies. Soil Biol Biochem 27:1589–1599

    Article  CAS  Google Scholar 

  • Nelson PN, Ladd JN, Oades JM (1996) Decomposition of 14C-labelled plant material in a salt-affected soil. Soil Biol Biochem 28:433–441

    Article  CAS  Google Scholar 

  • Nelson PN, Rahman BA, Oades JM (1997) Sodicity and clay type: influence on decomposition of added organic matter. Soil Sci Soc Am J 61:1052–1057

    Article  CAS  Google Scholar 

  • Niknam SR, McComb J (2000) Salt tolerance screening of selected Australian woody species – a review. Forest Ecol Manage 139:1–19

    Article  Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72

    Article  CAS  Google Scholar 

  • Ormeño E, Baldy V, Ballini C, Larchevêque M, Périssol C, Fernandez C (2006) Effects of environmental factors and leaf chemistry on leaf litter colonization by fungi in a Mediterranean shrubland. Pedobiologia 50:1–10

    Google Scholar 

  • Pankhurst CE, Yu S, Hawke BG., Harch BD (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol. Fertil Soils 33:204–217

    Article  CAS  Google Scholar 

  • Pannell DJ, Ewing MA (2006) Managing secondary dryland salinity: options and challenges. Agric Water Manage 80:41–56

    Article  Google Scholar 

  • Pathak H, Rao LN (1998) Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem 30:695–702

    Article  CAS  Google Scholar 

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press, pp 172–177

  • Rengel Z (2002) Role of pH in availability of ions in soil. In: Rengel Z (ed) Handbook of plant growth. pH as the master variable. Marcel Dekker, Inc, New York, USA, pp 323–350

    Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  CAS  Google Scholar 

  • Robson AD (1989) Soil acidity and plant growth. Academic Press, Sydney

    Google Scholar 

  • Ruiz-Jaén MC, Aide TM (2005) Vegetation structure, species diversity, and ecosystem processes as measures of restoration success. Forest Ecol Manage 218:1591–1573

    Google Scholar 

  • Sarig S, Emily BR, Mary KF 1993 Microbial activity-soil structure: response to saline water irrigation. Soil Biol Biochem 25:693–697

    Article  Google Scholar 

  • Searle PL (1984) The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. Analyst 109:549–568

    Article  CAS  Google Scholar 

  • Semmartin M, Ghersa CM (2006) Intraspecific changes in plant morphology, associated with grazing, and effects on litter quality, carbon and nutrient dynamics during decomposition. Aust Ecol 31:99–105

    Article  Google Scholar 

  • Spain AV (1990) Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australia rainforest soils. Aust J Soil Res 28:825–839

    Article  CAS  Google Scholar 

  • Sparling G., Zhu C (1993) Evaluation and calibration of biochemical methods to measure microbial biomass C and N in soils from Western Australia. Soil Biol Biochem 25:1793–1801

    Article  Google Scholar 

  • Szabolcs I (1989) Salt-affected soils. CRC Press, Inc, Boca Raton, Florida

    Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol R 62:504–544

    CAS  Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610

    Article  CAS  Google Scholar 

  • Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433–441

    Google Scholar 

Download references

Acknowledgments

We would like to thank Kosta Voltchanski and Rolf Polsen for their assistance with collection of soil samples. The Department of Conservation and Land Management (CALM) provided some historical and geological information on the study site. We especially thank Michael Smirk and Paul Damon for their assistances with the laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-gang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Xg., Rengel, Z., Mapfumo, E. et al. Increase in pH stimulates mineralization of ‘native’ organic carbon and nitrogen in naturally salt-affected sandy soils. Plant Soil 290, 269–282 (2007). https://doi.org/10.1007/s11104-006-9158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9158-4

Keywords

Navigation