Skip to main content

Advertisement

Log in

Extracellular Proteomes of Arabidopsis Thaliana and Brassica Napus Roots: Analysis and Comparison by MudPIT and LC-MS/MS

  • ORIGINAL PAPER
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

An important principle of the functional organization of plant cells is the targeting of proteins to specific subcellular locations. The physical location of proteins within the apoplasm/rhizosphere at the root–soil interface positions them to play a strategic role in plant response to biotic and abiotic stress. We previously demonstrated that roots of Triticum aestivum and Brassica napus exude a large suite of proteins to the apoplasm/rhizosphere [Basu et al. (1994) Plant Physiol 106:151–158; Basu et al. (1999) Physiol Plant 106:53–61]. This study is a first step to identify low abundance extracytosolic proteins from Arabidopsis thaliana and Brassica napus roots using recent advances in the field of proteomics. A total of 16 extracytosolic proteins were identified from B. napus using two-dimensional gel electrophoresis, tandem mass spectrometry (LC-MS/MS) and de novo sequencing. Another high-throughput proteomics approach, Multidimensional Protein Identification Technology (Mud PIT) was used to identify 52 extracytosolic proteins from A. thaliana. Signal peptide cleavage sites, the presence/absence of transmembrane domains and GPI modification were determined for these proteins. Functional classification grouped the extracellular proteins into different families including glycoside hydrolases, trypsin/protease inhibitors, plastocyanin-like domains, copper–zinc superoxide dismutases, gamma-thioinins, thaumatins, ubiquitins, protease inhibitor/seed storage/lipid transfer proteins, transcription factors, class III peroxidase, and plant basic secretory proteins (BSP). We have also developed an on-line, Extracytosolic Plant Proteins Database (EPPdb, http://eppdb.biology.ualberta.ca) to provide information about these extracytosolic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MS:

mass spectrometry

DTT:

dithiothreitol

IPG:

immobilized pH gradient

CHAPS:

3-[(3-Cholamidopropyl) Dimethyl-Ammonio]-1-Propanesulfonate

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Loyola VVM, Flores HE, Vivanco JM (2001) Root specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell Dev Biol Plant 37:730–741

    CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Basu U, Basu A, Taylor GJ (1994) Differential exudation of polypeptides by roots of aluminum-resistant and aluminum-sensitive cultivars of Triticum aestivum L. in response to aluminum stress. Plant Physiol 106:151–158

    PubMed  CAS  Google Scholar 

  • Basu U, Good AG, Aung T, Slaski JJ, Basu A, Briggs KG, Taylor GJ (1999) A 23 kD, aluminum-binding, root exudates polypeptide co-segregates with the aluminum-resistant phenotype in Triticum aestivum. Physiol Plant 106:53–61

    Article  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    Article  PubMed  CAS  Google Scholar 

  • Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba Y, Raskin I (1999) Production of recombinant proteins in plant root exudates. Nat Biotechnol 17:466–469

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Briat JF, Lebrun M (1999) Plant responses to metal toxicity. C R Acad Sci III 322:43–54

    PubMed  CAS  Google Scholar 

  • Chang WWP, Huang L, Shen M, Webster C, Burlingame AM, Roberts JKM (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment and identification of proteins by mass spectrometry. Plant Physiol 122:295–317

    Article  PubMed  CAS  Google Scholar 

  • Chuong SDX, Good AG, Taylor GJ, Freeman MC, Moorhead GBG, Muench DG (2004) Large-scale identification of tubulin binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 3:970–983

    Article  PubMed  CAS  Google Scholar 

  • Clauss MJ, Mitchell-Olds T (2004) Functional divergence in tandemly duplicated Arabidopsis thaliana trypsin inhibitor genes. Genetics 166:1419–1436

    Article  PubMed  CAS  Google Scholar 

  • Crofts AJ, Leborgne-Castel N, Hillmer S, Robinson DG, Phillipson B, Carlsson LE, Ashford DA, Denecke J (1999) Saturation of the endoplasmic reticulum retention machinery reveals anterograde bulk flow. Plant Cell 11:2233–2247

    Article  PubMed  CAS  Google Scholar 

  • Drake PMW, Chargelegue DM, Vine ND, Dolleweerd CJV, Obregon P, Ma JKC (2003) Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots. Plant Mol Biol 52:233–241

    Article  PubMed  CAS  Google Scholar 

  • Dreger M (2003) Proteome analysis at the level of subcellular structures Eur J Biochem 270:589–599

    Article  PubMed  CAS  Google Scholar 

  • Eisenhaber B, Wildpaner M, Schultz CJ, Borner GHH, Dupree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies of Arabidopsis and Rice. Plant Physiol 133:1691–1701

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, Von Hejne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127:918–927

    Article  PubMed  CAS  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  PubMed  Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96:5973–5977

    Article  PubMed  CAS  ADS  Google Scholar 

  • Hamilton JMU, Simpson DJ, Hyman SC, Ndimba BK, Antoni R, Slabas AR (2003) Ara12 subtilisin-like protease from Arabidopsis thaliana: purification, substrate specificity and tissue localization. Biochem J 370:57–67

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Coutinho M, Davies GJ (2001) A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol 47:55–72

    Article  PubMed  CAS  Google Scholar 

  • Ingvardsen C, Veierskov B (2001) Ubiquitin-and proteasome-dependent proteolysis in plants. Physiol Plant 112:451–459

    Article  PubMed  CAS  Google Scholar 

  • Jasinski M, Stukkens Y, Degand H, Purnell B (2002) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095–1107

    Article  Google Scholar 

  • Kasprzewska A (2003) Plant Chitinases-regulation and function. Cell Mol Biol Lett 8:809–824

    PubMed  CAS  Google Scholar 

  • Kizis D, Lumbreras V, Pages M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498:187–189

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, Heijne GV, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara C, Arakawa K, Yoshida S (1999) Abscisic acid-induced secretory proteins in suspension-cultured cells of winter wheat. Plant Cell Physiol 40:184–191

    PubMed  CAS  Google Scholar 

  • Lee HY, Bahn SC, Kang YM, Lee KH, Kim HJ, Noh EK, Palta JP, Shin JS, Ryu SB (2003) Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15:1990–2002

    Article  PubMed  CAS  Google Scholar 

  • Mandal S, Kundu P, Roy B, Mandal RK (2002) Precursor of the inactive 2S seed storage protein from the Indian mustard Brassica juncea is a novel trypsin inhibitor. J Biol Chem 277:37161–37168

    Article  PubMed  CAS  Google Scholar 

  • Medzihradszky KF, Burlingame AL (1994) The advantages and versatility of a high-energy collision-induced dissociation-based strategy for the sequence and structural determination of proteins. Methods: A comparison to Methods in Enzymology 6:284–303

    Article  CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli F (2000) Soil organic matter mobilization by root exudates. Chemosphere 5:653–658

    Article  Google Scholar 

  • Nesvizhskii AI, Aebersold R (2004) Analysis, statistical validation and dissemination of large-scale proteomics datasets generated by tandem MS. DDT 9:173–181

    PubMed  CAS  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Montagu MV Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  PubMed  CAS  ADS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  • Park OK (2004) Proteomic studies in plants. J Biochem Mol Biol 37:133–138

    PubMed  CAS  Google Scholar 

  • Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50

    Article  PubMed  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  PubMed  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner R (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  PubMed  CAS  Google Scholar 

  • Shepherd T, Davies HV (1993) Carbon loss from the roots of forage rape (Brassica napus L.) seedlings following pulse-labeling with CO2. Ann Bot 72:155–163

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Slabas AR, Ndimba B, Simon WJ, Chivasa S (2004) Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. Biochem Soc Trans 32: part 3

  • Thangstad OP, Gilde B, Chadchawan S, Seem M, Husebye H, Bradley D, Bones AM (2004) Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Plant Mol Biol 54:597–611

    Article  PubMed  CAS  Google Scholar 

  • Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138

    Article  PubMed  CAS  Google Scholar 

  • Tomscha JL, Trull MC, Deikman J, Lynch JP, Guiltinan MJ (2004) Phosphatase under-producer mutants have altered phosphorus relations. Plant Physiol 135:334–345

    Article  PubMed  CAS  Google Scholar 

  • Vamvakopoulos JE, Taylor CJ, Morris-Stiff GJ, Green C, Metcalfe S (2002) The interleukin-1 receptor antagonist gene: a single-copy variant of the intron 2 variable number tandem repeat (VNTR) polymorphism. Eur J Immunogenetics 29:337–340

    Article  CAS  Google Scholar 

  • Vitale A, Denecke J (1999) The endoplasmic reticulum-gateway of the secretory pathway. Plant Cell 11:615–628

    Article  PubMed  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zaiane O, Goebel R, Southron JL, Basu U, Whittal RM, Stephens JL, Taylor GJ (2004) Developing a database for proteomic analysis of extracytosolic plant proteins. Second International Workshop on Biological Data Management (BIDM’2004) in conjunction with the 15th Int. Conf. on Database and Expert Systems Applications DEXA2004, Zaragoza, Spain, August 30–September 3, 2004

  • Whitelegge JP (2003) Plant proteomics: blasting out of a MudPIT. Proc Natl Acad Sci 99:11564–11566

    Article  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do?. Trends Plant Sci 9:13–17

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 10:505–512

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by an Alberta Agricultural Research Institute (AARI) grant to GJT and RMW, Natural Sciences and Engineering Research Council of Canada (NSERC) grant to GJT, RG, OZ and AGG and FGAS project to DGM, AGG and GJT. The FGAS project is supported by Genome Prairie, in part through Genome Canada, a not-for-profit corporation which is leading a national strategy on genomics with $375 million in funding from the Government of Canada. The personnel at the Institute for Biomolecular Design (IBD), University of Alberta, Edmonton, AB, Canada and University of Victoria BC Proteomics Centre staffs are gratefully acknowledged for their expertise and assistance with mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urmila Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, U., Francis, J.L., Whittal, R.M. et al. Extracellular Proteomes of Arabidopsis Thaliana and Brassica Napus Roots: Analysis and Comparison by MudPIT and LC-MS/MS. Plant Soil 286, 357–376 (2006). https://doi.org/10.1007/s11104-006-9048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9048-9

Keywords

Navigation