Skip to main content
Log in

Assessment of Phytotoxicity of Chromium in Flooded Soils using Embedded Selective Ion Exchange Resin Method

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Chromium present in the forms of Cr(VI) or Cr(III) in soils. Since the toxicity and mobility of Cr(VI) are higher than those of Cr(III), it would be important to estimate soil Cr(VI) accurately in order to assess the phytotoxicity of Cr. Soil redox potential can influence the distribution of Cr between Cr(VI) and Cr(III) forms, and thus an in situ method which is not affected by the soil redox condition is needed for determining Cr(VI) availability in paddy fields. In this study, the Cu-saturated selective ion exchange resin (DOWEX M4159), serving as an infinite sink, was embedded in soils to extract available Cr(VI) from three representative saturated soils with different amounts of Cr(VI). The results suggested that Cr(VI) reduction occurred in the flooded soils, and the acid environment favored the adsorption and reduction of Cr(VI). There was a significant dose-response relationship between the soil resin-extractable Cr(VI) and the plant height of rice seedlings for test soils. The experimental results suggested that the embedded selective ion exchange resin method could be a suitable in situ method for assessing the phytotoxicity of Cr in flooded soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R J Bartlett B R James (1979) ArticleTitleBehavior of chromium in soil: III. Oxidation J. Environ. Qual. 8 31–35 Occurrence Handle1:CAS:528:DyaE1MXht1Siu70%3D

    CAS  Google Scholar 

  • R J Bartlett B R James (1988) Mobility and bioavailability of chromium in soils J O Nriagu E Nieboer (Eds) Chromium in the Natural and Human Environments John Wiley & Sons New York, USA 267–304

    Google Scholar 

  • R J Barlett J M Kimble (1976) ArticleTitleBehavior of chromium in soil: II. Hexavalent form J. Environ. Qual. 5 383–386

    Google Scholar 

  • N S Bolan D C Adriano R Natesan B J Koo (2003) ArticleTitleEffect of organic amendments on the reduction and phytoavailability of chromate in mineral soil J. Environ. Qual. 32 120–128 Occurrence Handle1:CAS:528:DC%2BD3sXlslKltg%3D%3D Occurrence Handle12549550 Occurrence Handle10.2134/jeq2003.0120

    Article  CAS  PubMed  Google Scholar 

  • J M Campos M Martinez-Pacheco C Cervantes (1995) ArticleTitleHexavalent-chromium reduction by a chromate-resistant Bacillus strain Antonie van Leeuwenhoek 68 203–208 Occurrence Handle1:CAS:528:DyaK2MXpvFyqu7c%3D Occurrence Handle8572677 Occurrence Handle10.1007/BF00871816

    Article  CAS  PubMed  Google Scholar 

  • P L Carey R G McLaren K C Cameron J R Sedcole (1996) ArticleTitleLeaching of copper, chromium and arsenic through some free-draining New Zealand soils Aust. J. Soil Res. 34 583–597 Occurrence Handle1:CAS:528:DyaK28XltVajurc%3D Occurrence Handle10.1071/SR9960583

    Article  CAS  Google Scholar 

  • J M Chen O J Hao (1996) ArticleTitleEnvironmental factors and modeling in microbial chromium (VI) reduction Water Environ. Res. 68 1156–1164 Occurrence Handle1:CAS:528:DyaK28XntlKmsr8%3D

    CAS  Google Scholar 

  • J Chung R J Zasoski S Lim (1994) ArticleTitleKinetics of chromium (III) oxidation by various manganese oxides Korean J. Agric. Chem. Biotechnol. 37 414–420 Occurrence Handle1:CAS:528:DyaK2MXjvFensLg%3D

    CAS  Google Scholar 

  • B E Davies (1992) ArticleTitleInterrelationships between soil properties and uptake of cadmium, copper, lead and zinc from contaminated soil by radish Water Air Soil Pollut. 63 331–342 Occurrence Handle1:CAS:528:DyaK38XkvV2nt7g%3D Occurrence Handle10.1007/BF00475500

    Article  CAS  Google Scholar 

  • S E Fendorf J E Matthew P Grossel D L Sparks (1997) ArticleTitleArsenate and chromate retention mechanism on goethite I. Surface structure Environ. Sci. Technol. 31 315–320 Occurrence Handle1:CAS:528:DyaK2sXitVGksQ%3D%3D Occurrence Handle10.1021/es950653t

    Article  CAS  Google Scholar 

  • C Garbisu I Alkorta M J Llama J L Serra (1998) ArticleTitleAerobic chromate reduction by Bacillus subtil Biodegradation 9 133–141 Occurrence Handle1:CAS:528:DyaK1MXlt1yk Occurrence Handle9821258 Occurrence Handle10.1023/A:1008358816529

    Article  CAS  PubMed  Google Scholar 

  • B R James R J Bartlett (1983a) ArticleTitleBehavior of chromium in soils. VI. Interactions between oxidation-reduction and organic complexation J. Environ. Qual. 12 173–176 Occurrence Handle1:CAS:528:DyaL3sXit1Whurc%3D

    CAS  Google Scholar 

  • B R James R J Bartlett (1983b) ArticleTitleBehavior of chromium in soils. VII. Adsorption and reduction of hexavalent forms J. Environ. Qual. 12 177–181 Occurrence Handle1:CAS:528:DyaL3sXit1Whu74%3D

    CAS  Google Scholar 

  • B R James J C Petura R J Vitale G R Mussoline (1995) ArticleTitleHexavalent chromium extraction from soils: a comparison of five methods Environ. Sci. Technol. 29 2377–2380 Occurrence Handle1:CAS:528:DyaK2MXntFChs78%3D

    CAS  Google Scholar 

  • K Kamada K Doki (1977) ArticleTitleMovement of chromium in submerged soil and growth of rice plants. II. Influence of two different kinds of soil and addition of Fe(II) on injury of rice plants by Cr(VI) J. Sci. Soil Manure 48 457–465 Occurrence Handle1:CAS:528:DyaE1cXhtVeqsL4%3D

    CAS  Google Scholar 

  • D Y Lee P H Chiang K H Houng (1996) ArticleTitleDetermination of bioavailable cadmium in paddy fields by chelating resin membrane embedded in soils Plant Soil 181 233–239 Occurrence Handle1:CAS:528:DyaK28XlvFGitLY%3D Occurrence Handle10.1007/BF00012058

    Article  CAS  Google Scholar 

  • W L Lindsay (1979) Chemical Equilibria in Soils John Wiley & Sons New York

    Google Scholar 

  • M E Losi C Amrhein W T Frankenberger (1994) ArticleTitleEnvironmental biochemistry of chromium Rev. Environ. Contam. Toxicol. 36 91–121

    Google Scholar 

  • J J Mortvedt Giordano (1975) ArticleTitleResponse of corn to zinc and chromium in municipal waste applied to soil J. Environ. Qual. 4 170–174 Occurrence Handle1:CAS:528:DyaE2MXktVyhs7w%3D Occurrence Handle10.2134/jeq1975.00472425000400020006x

    Article  CAS  Google Scholar 

  • D S Oliver F J Brockman R S Bowman T L Kieft (2003) ArticleTitleVadose zone processes and chemical transport: microbial reduction of hexavalent chromium under vadose zone conditions J. Environ. Qual. 32 317–324 Occurrence Handle1:CAS:528:DC%2BD3sXlslKrtA%3D%3D Occurrence Handle12549572 Occurrence Handle10.2134/jeq2003.0317

    Article  CAS  PubMed  Google Scholar 

  • R R Patterson S Fendorf M Fendorf (1997) ArticleTitleReduction of hexavalent chromium by amorphous iron sulfide Environ. Sci. Technol. 31 2039–2044 Occurrence Handle1:CAS:528:DyaK2sXjsVSrsL0%3D Occurrence Handle10.1021/es960836v

    Article  CAS  Google Scholar 

  • W H Patrick R D Delaune SuffixJr. (1972) ArticleTitleCharacterization of the oxidized and reduced zones in flooded soil Soil Sci. Soc. Am. Proc. 36 573–576 Occurrence Handle1:CAS:528:DyaE38XkvFWht7c%3D Occurrence Handle10.2136/sssaj1972.03615995003600040024x

    Article  CAS  Google Scholar 

  • J A Risser D E Baker (1990) Testing soils for toxic metals R R Westerman (Eds) Soil Testing and Plant Analysis EditionNumber3 Soil Sci Soc Am Madison, WI USA 275–298

    Google Scholar 

  • H Shen Y T Wang (1994) ArticleTitleCharacterization of enzymatic reduction of chromium by Escherichia coli ATCC 33456 Appl. Environ. Microbiol. 59 3771–3777

    Google Scholar 

  • M A Stewart P M Jardine M O Barnett T L Mehlhorn L K Hyder L D McKay (2003) ArticleTitleInfluence of soil geochemical and physical properties on the sorption and bioaccessibility of chromium (III) J. Environ. Qual. 32 129–137 Occurrence Handle1:CAS:528:DC%2BD3sXlslKltw%3D%3D Occurrence Handle12549551

    CAS  PubMed  Google Scholar 

  • T K Tokunaga J Wan M K Firestone T C Hazen K R Olson D J Herman S R Sutton A Lanzirotti (2003) ArticleTitleIn situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment J. Environ. Qual. 32 1641–1649 Occurrence Handle1:CAS:528:DC%2BD3sXnsFKmtb4%3D Occurrence Handle14535304

    CAS  PubMed  Google Scholar 

  • C E Turick C E Camp W A Apel (1997) ArticleTitleReduction of Cr(VI) to Cr(III) in a packed-bed bioreactor Appl. Biochem. Biotechnol. 63--65 871–877 Occurrence Handle10.1007/BF02920483 Occurrence Handle18576140

    Article  PubMed  Google Scholar 

  • P C Wang T ori K Komori M Sasatsu K Toda H Ohtake (1989) ArticleTitleIsolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions Appl. Environ. Microbiol. 55 1665–1669 Occurrence Handle1:CAS:528:DyaL1MXkslCmtLY%3D Occurrence Handle16347962

    CAS  PubMed  Google Scholar 

  • Y T Wang C Xiao (1995) ArticleTitleFactors affecting hexavalent chromium reduction in pure cultures of bacteria Water Res. 29 2467–2474 Occurrence Handle1:CAS:528:DyaK2MXnvVKitbs%3D

    CAS  Google Scholar 

  • P F Yu K W Juang D Y Lee (2004) ArticleTitleAssessment of the phytotoxicity of chromium in soils using the selective ion exchange resin extraction method Plant Soil 258 333–340 Occurrence Handle1:CAS:528:DC%2BD2cXjvF2qsbY%3D Occurrence Handle10.1023/B:PLSO.0000016562.58948.b3

    Article  CAS  Google Scholar 

  • J M Zachara C C Ainsworth C E Cowan C T Resch (1989) ArticleTitleAdsorption of chromate by subsurface soil horizons Soil Sci. Soc. Am. J. 53 418–428 Occurrence Handle10.2136/sssaj1989.03615995005300020018x

    Article  Google Scholar 

  • A Zayed C M Lytle J H Qian N Terry (1998) ArticleTitleChromium accumulation, translocation and chemical speciation in vegetable crops Planta 206 293–299 Occurrence Handle1:CAS:528:DyaK1cXltlKhs78%3D

    CAS  Google Scholar 

  • D Zhao A K SenGupt L Stewart (1998) ArticleTitleSelective removal of Cr(VI) oxyanions with a new anion exchanger Ind. Eng. Chem. Res. 37 4383–4387 Occurrence Handle1:CAS:528:DyaK1cXmt1yjsL0%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dar-Yuan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DY., Huang, JC., Juang, KW. et al. Assessment of Phytotoxicity of Chromium in Flooded Soils using Embedded Selective Ion Exchange Resin Method. Plant Soil 277, 97–105 (2005). https://doi.org/10.1007/s11104-005-5997-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-5997-7

Keywords

Navigation