Skip to main content
Log in

Removal of Chromium from Contaminated Soil by Electrokinetic Remediation Combined with Adsorption by Anion Exchange Resin and Polarity Reversal

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

Soil chromium pollution is a serious environmental problem in the world. The electrokinetic remediation (EKR) is an effective method to remediate heavy metal-contaminated soil. This study aimed to investigate the removal mechanism and the effect of electrolyte alkalization when used the conventional electrokinetic remediation and adsorption to remove Cr(VI) from the contaminated soil. Moreover, we attempted to eliminate the effect of electrolyte alkalization by polarity reversal method. The laboratory experiments include three parts: jar tests of 717 resin adsorption capacity, conventional EKR experiments (EK1–EK5), and polarity reversal experiments (C1–C11). The 717 exchange resin provided better adsorption performance for Cr(VI) in low pH condition. The Cr(VI) in soil was removed by functions of electromigration, adsorption, and reduction. The Cr(VI) removal efficiency reached 72.35%. Part of Cr(VI) was reduced to less toxic Cr(III) by citric acid and free electrons in soil. The electrolyte alkalization in the cathode was an important factor that hindering the EKR. The polarity reversal controlled the electrolyte pH below 7 during EKR. Moreover, the Cr(VI) removal efficiency was 69.20% by reversing polarity every 4 h, and it consumed less energy as compared to the conventional EKR. There were no hazardous materials were added or produced in EKR process. The EKR combined with adsorption is sustainable and can be used in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Date Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Rhaman MM, Karim MR, Hyder MKMZ, Ahmed Y, Nath RK (2020) Removal of chromium (VI) from effluent by a magnetic bioadsorbent based on jute stick powder and its adsorption isotherm, kinetics and regeneration study. Water Air Soil Pollut 231(4):164. https://doi.org/10.1007/s11270-020-04544-8

    Article  CAS  ADS  Google Scholar 

  2. Kowalski Z (1994) Treatment of chromic tannery wastes. J Hazard Mater 37(1):137–141. https://doi.org/10.1016/0304-3894(94)85042-9

    Article  MathSciNet  CAS  Google Scholar 

  3. Jensen PE, Ottosen LM, Allard B (2012) Electrodialytic versus acid extraction of heavy metals from soil washing residue. Electrochim Acta 86:115–123. https://doi.org/10.1016/j.electacta.2012.07.002

    Article  CAS  Google Scholar 

  4. Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291. https://doi.org/10.1016/j.jhazmat.2013.01.048

    Article  CAS  PubMed  Google Scholar 

  5. Yan YJ et al (2018) Application of iron-loaded activated carbon electrodes for electrokinetic remediation of chromium-contaminated soil in a three-dimensional electrode system. Sci Rep 8:8753. https://doi.org/10.1038/s41598-018-24138-z

    Article  CAS  ADS  Google Scholar 

  6. Ellis AS, Johnson TM, Bullen TD (2002) Chromium isotopes and the fate of hexavalent chromium in the environment. Science 295(5562):2060–2062. https://doi.org/10.1126/science.1068368

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Chen WP et al (2018) Challenges and countermeasures of heavy metal pollution control in farmland soils in China. Acta PedologSin 55(2):261–272. https://doi.org/10.11766/trxb201711240485

    Article  Google Scholar 

  8. Zhou M, Xu J, Zhu S, Wang Y, Gao H (2018) Exchange electrode-electrokinetic remediation of Cr-contaminated soil using solar energy. Sep Purif Technol 190:297–306. https://doi.org/10.1016/j.seppur.2017.09.006

    Article  CAS  Google Scholar 

  9. Garbisu C, Alkorta I, Llama MJ, Serra JL (1998) Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9(2):133–141. https://doi.org/10.1023/A:1008358816529

    Article  CAS  PubMed  Google Scholar 

  10. Chen N, Xie T, Zhou X, Tan H (2015) Effect of in-situ chemical leaching technology on the treatment of heavy metal compound contaminated paddy soil in Hunan Province. J Anhui Agric Sci 43:247–249. https://doi.org/10.13989/j.cnki.0517-6611.2015.28.091

    Article  CAS  Google Scholar 

  11. Yeung AT (2006) Fundamental aspects of prolonged electrokinetic flows in kaolinites. Geomech Geoeng Int J 1:13–25. https://doi.org/10.1080/17486020500528026

    Article  CAS  Google Scholar 

  12. Yeung AT (2009) Electrochemical remediation technologies for polluted soils. In: Sediments and groundwater. Wiley, Hoboken, pp 65–94. https://doi.org/10.1002/9780470523650

  13. Yeung AT, Gu YY (2011) A review on techniques to enhance electrochemical remediation of contaminated soil. J Hazard Mater 195:11–29. https://doi.org/10.1016/j.jhazmat.2011.08.047

    Article  CAS  PubMed  Google Scholar 

  14. Li D et al (2012) Near-anode focusing phenomenon caused by the high anolyte concentration in the electrokinetic remediation of chromium (VI)-contaminated soil. J Hazardous Mater 229:282–291. https://doi.org/10.1016/j.jhazmat.2012.05.107

    Article  CAS  ADS  Google Scholar 

  15. Sawada A, Mori KI, Tanaka S, Fukushima M, Tatsumi K (2004) Removal of Cr (VI) from contaminated soil by electrokinetic remediation. Waste Manag 24:483–490. https://doi.org/10.1016/S0956-053X(03)00133-8

    Article  CAS  PubMed  Google Scholar 

  16. Liu ZT, Zhuang YF (2020) Electrokinetic transport and removal of lead contaminants from kaolin. Chin J Geotech Eng 42(7):1359–1366. https://doi.org/10.11779/CJGE202007020

    Article  Google Scholar 

  17. Chen YX, Zhi D, Zhou YY et al (2021) Electrokinetic techniques, their enhancement techniques and composite techniques with other processes for persistent organic pollutants remediation in soil: a review. J Ind Eng Chem 97:163–172. https://doi.org/10.1016/j.jiec.2021.03.009

    Article  CAS  Google Scholar 

  18. Al-Hamdan AZ, Reddy KR (2008) Transport and speciation of heavy metals in soils during electrokinetic remediation: Influence of soil type and electric potential. Geotech Spec Publ 177:447–454. https://doi.org/10.1061/40970(309)56

    Article  CAS  Google Scholar 

  19. Reddy KR, Parupudi US, Devulapalli SN (1997) Electrokinetic remediation of soils contaminated with electroplating wastes. Proc Am Power Conf 1:342–346

    Google Scholar 

  20. Reddy KR, Parupudi US, Devulapalli SN, Xu CY (1997) Effects of soil composition on the removal of chromium by electrokinetics. J Hazard Mater 55(1–3):135–158. https://doi.org/10.1016/S0304-3894(97)00020-4

    Article  CAS  Google Scholar 

  21. Wu J, Zhang J, Xiao C (2016) Focus on factors affecting pH, flow of Cr and transformation between Cr(VI) and Cr(III) in the soil with different electrolytes. Electrochim Acta 211:652–662. https://doi.org/10.1016/j.electacta.2016.06.048

    Article  CAS  Google Scholar 

  22. Puppala SK, Alshawabkeh AN, Acar YB, Gale RJ, Bricka M (1997) Enhanced electrokinetic remediation of high sorption capacity soil. J Hazard Mater 55(1–3):203–220. https://doi.org/10.1016/S0304-3894(97)00011-3

    Article  CAS  Google Scholar 

  23. Rodsand T, Acar YB, Breedveld G (1995) Electrokinetic extraction of lead from spiked Norwegian marine clay. Geotech Spec Publ 195(46):1518–1534

    Google Scholar 

  24. Reed BE, Berg MT, Thompson JC, Hatfield JH (1995) Chemical conditioning of electrode reservoirs during electrokinetic soil flushing of Pb-contaminated silt loam. J Environ Eng 121:805–815. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:11(805)

    Article  CAS  Google Scholar 

  25. Reddy KR, Chinthamreddy S (2004) Enhanced electrokinetic remediation of heavy metals in glacial till soils using different electrolyte solutions. J Environ Eng 130(4):442–455. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:4(442)

    Article  CAS  Google Scholar 

  26. Reddy KR, Chinthamreddy S (2003) Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils. J Geotech Geoenviron Eng 129(3):263–277. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(263)

    Article  CAS  Google Scholar 

  27. Reddy KR, Danda S, Saichek RE (2004) Complicating factors of using ethylenediamine tetraacetic acid to enhance electrokinetic remediation of multiple heavy metals in clayey soils. J Environ Eng 130(11):1357–1366

    Article  CAS  Google Scholar 

  28. Lee HH, Yang JW (2000) A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. J Hazard Mater 77:227–240. https://doi.org/10.1016/S0304-3894(00)00251-X

    Article  CAS  PubMed  Google Scholar 

  29. Lopez-Vizcaino R, Yustres A, Saez C et al (2017) Effect of polarity reversal on the enhanced electrokinetic remediation of 2,4-D-polluted soils: A numerical study. Electrochim Acta 258:414–422. https://doi.org/10.1016/j.electacta.2017.11.077

    Article  CAS  Google Scholar 

  30. Fu RB, Wen DD, Xia XQ (2017) Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes. Chem Eng J 316:601–608. https://doi.org/10.1016/j.cej.2017.01.092

    Article  CAS  Google Scholar 

  31. Sillanpaa M, Oikari A (1996) Assessing the impact of complexation by EDTA and DTPA on heavy metal toxicity using microtox bioassay. Chemosphere 32:1485–1497. https://doi.org/10.1016/0045-6535(96)00057-4

    Article  CAS  ADS  Google Scholar 

  32. Dirilgen N (1998) Effects of pH and chelator EDTA on Cr toxicity and accumulation in Lemma minor. Chemosphere 37:771–783. https://doi.org/10.1016/S0045-6535(98)00080-0

    Article  CAS  ADS  Google Scholar 

  33. Nortemann B (1999) Biodegradation of EDTA. Appl Microbiol Biotechnol 51:751–759. https://doi.org/10.1007/s002530051458

    Article  CAS  PubMed  Google Scholar 

  34. Lestan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13. https://doi.org/10.1016/j.envpol.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  35. Gidudu B, Chirwa EMN (2020) The combined application of a high voltage, low electrode spacing, and biosurfactants enhances the bio-electrokinetic remediation of petroleum contaminated soil. J Clean Prod 276:122745. https://doi.org/10.1016/j.jclepro.2020.122745

    Article  CAS  Google Scholar 

  36. Weng CH, Lin YT, Lin TY, Kao CM (2007) Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron. J Hazard Mater 149:292–302. https://doi.org/10.1016/j.jhazmat.2007.03.076

    Article  CAS  PubMed  Google Scholar 

  37. Wang LS, Huang LH (2019) Application of a multi-electrode system with polyaniline auxiliary electrodes for electrokinetic remediation of chromium-contaminated soil. Sep Purif Technol 224:106–112. https://doi.org/10.1016/j.seppur.2019.05.019

    Article  CAS  Google Scholar 

  38. He JY, He CQ (2018) Comparative study of remediation of Cr(VI)-contaminated soil using electrokinetics combined with bioremediation. Environ Sci Pollut Res 25:17682–17689. https://doi.org/10.1007/s11356-018-1741-8

    Article  CAS  Google Scholar 

  39. Wang YX et al (2019) Application of Polypyrrole flexible electrode for electrokinetic remediation. Chem Eng J 373:131–139. https://doi.org/10.1016/j.cej.2019.05.016

    Article  CAS  Google Scholar 

  40. Reddy KR, Chinthamreddy S (1999) Electrokinetic remediation of heavy metal-contaminated soils under reducing environments. Waste Manage 19(4):269–282. https://doi.org/10.1016/S0956-053X(99)00085-9

    Article  CAS  Google Scholar 

  41. Song W, Gao B, Xu X, Wang F, Xue N, Sun S et al (2016) Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. J Hazard Mater 304:280–290. https://doi.org/10.1016/j.jhazmat.2015.10.073

    Article  CAS  PubMed  Google Scholar 

  42. Boulakradeche MO, Akretche DE, Cameselle C, Hamidi N (2015) Enhanced electrokinetic remediation of hydrophobic organics contaminated soils by the combination of non-ionic and ionic surfactants. Electrochim Acta 174:1057–1066. https://doi.org/10.1016/j.electacta.2015.06.091

    Article  CAS  Google Scholar 

  43. Zhu S, Han D, Zhou M, Liu Y (2016) Ammonia enhanced electrokinetics coupled with bamboo charcoal adsorption for remediation of fluorine-contaminated kaolin clay. Electrochim Acta 198:241–248. https://doi.org/10.1016/j.electacta.2016.03.033

    Article  CAS  Google Scholar 

  44. Claudio C (2015) Enhancement of electro-osmotic flow during the electro-kinetic treatment of a contaminated soil. Electrochim Acta 181:31–38. https://doi.org/10.1016/j.electacta.2015.02.191

    Article  CAS  Google Scholar 

  45. Yan YJ, Ling Z, Shu W, Huang T, Crane R (2023) Chromium removal from contaminated soil using a novel FeOx/granular activated carbon-based three-dimensional electrokinetic system. Chem Eng J 455:140613. https://doi.org/10.1016/j.cej.2022.140613

    Article  CAS  Google Scholar 

  46. Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347. https://doi.org/10.1016/S0168-6445(01)00057-2

    Article  CAS  PubMed  Google Scholar 

  47. Chinthamreddy S, Reddy KR (1999) Oxidation and mobility of trivalent chromium in manganese-enriched clays during electrokinetic remediation. Soil Sediment Contamin 8(2):197–216. https://doi.org/10.1080/10588339991339306

    Article  CAS  Google Scholar 

  48. Na C, Lan Y, Bo W, Mao J (2013) Reduction of Cr (VI) by organic acids in the presence of Al (III). J Hazardous Mater 260:150–156. https://doi.org/10.1016/j.jhazmat.2013.05.010

    Article  CAS  Google Scholar 

  49. Xu Z, Bai S, Liang J, Zhou L, Lan Y (2013) Photocatalytic reduction of Cr(VI) by citric and oxalic acids over biogenetic jarosite. Mater Sci Eng C Mater Biol Appl 33:2192–2196. https://doi.org/10.1016/j.msec.2013.01.040

    Article  CAS  PubMed  Google Scholar 

  50. Ying L, Cheng C, Jing Z, Lan Y (2015) Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light. Chemosphere 127:87–92. https://doi.org/10.1016/j.chemosphere.2015.01.014

    Article  CAS  ADS  Google Scholar 

  51. Fang Y, Yang K, Zhang Y, Peng C, Robledo-Cabrera A (2021) Highly surface activated carbon to remove Cr(VI) from aqueous solution with adsorbent recycling. Environ Res 197:111151. https://doi.org/10.1016/j.envres.2021.111151

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Ion transport and gradient theory of energy level in electroosmosis, No: 41472039).

Author information

Authors and Affiliations

Authors

Contributions

X-yL was involved in conceptualization, methodology, experimental operation, data acquisition, writing-original draft, and analysis and interpretation of data. Y-fZ was involved in writing-review and editing, conceptualization, methodology, project administration, and funding acquisition.

Corresponding author

Correspondence to Yan-feng Zhuang.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xy., Zhuang, Yf. Removal of Chromium from Contaminated Soil by Electrokinetic Remediation Combined with Adsorption by Anion Exchange Resin and Polarity Reversal. Int. J. of Geosynth. and Ground Eng. 10, 2 (2024). https://doi.org/10.1007/s40891-023-00509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-023-00509-z

Keywords

Navigation