Skip to main content
Log in

Rhizotoxicity of aluminate and polycationic aluminium at high pH

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Although monomeric Al species are often toxic in acidic soils, the effects of the aluminate ion (Al(OH) 4 ) on roots grown in alkaline media are still unclear. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of Al(OH) 4 on root growth of mungbean (Vigna radiata L.). Root growth was reduced by 13% after 3 d growth in solutions with an Al(OH) 4 activity of 16 µM and no detectable polycationic Al (Al13). This decrease in root growth was associated with the formation of lesions on the root tips (due to the rupturing of the epidermal and outer cortical cells) and a slight limitation to root hair growth (particularly on the lateral roots). When roots displaying these symptoms were transferred to fresh Al(OH) 4 solutions for a further 12 h, no root tip lesions were observed and root hair growth on the lateral roots improved. The symptoms were similar to those induced by Al13 at concentrations as low as 0.50 µM Al which are below the detection limit of the ferron method. Thus, Al(OH) 4 is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH) 4 due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CRD:

completely randomised design

DI:

deionised

EC:

electrical conductivity

TDI:

triple deionised

References

  • Aitken R L, Campbell D J and Bell L C 1984 Properties of Australian fly ashes relevant to their agronomic utilization. Aust. J. Soil Res. 22, 443–453.

    Article  CAS  Google Scholar 

  • Bell R W, Rerkasem B, Keerati-Kasikorn P, Phetchawee S, Hiranburana N, Ratanarat S, Pongsakul P and Loneragan J F 1990 Mineral nutrition of food legumes in Thailand with particular reference to micronutrients. pp. 52. Australian Centre for International Agricultural Research, Canberra.

    Google Scholar 

  • Bertsch P M, Layton W J and Barnhisel R I 1986 Speciation of hydroxy-aluminum solutions by wet chemical and aluminum-27 NMR methods. Soil Sci. Soc. Am. J. 50, 1449–1454.

    CAS  Google Scholar 

  • Bertsch P M and Parker D R 1996 Aqueous polynuclear aluminum species. In The Environmental Chemistry of Aluminum. Ed. G Sposito. pp. 117–168. Lewis Publishers, New York.

    Google Scholar 

  • Blamey F P C, Edwards D G and Asher C J 1983 Effects of aluminum, OH:Al and P:Al molar ratios, and ionic strength on soybean root elongation in solution culture. Soil Sci. 136, 197–207.

    CAS  Google Scholar 

  • Brady D J, Edwards D G, Asher C J and Blamey F P C 1993 Calcium amelioration of aluminium toxicity effects on root hair development in soybean (Glycine max (L.) Merr.). New Phytol. 123, 531–538.

    CAS  Google Scholar 

  • Comin J J, Barloy J, Bourrie G and Trolard F 1999 Differential effects of monomeric and polymeric aluminium on the root growth and on the biomass production of root and shoot of corn in solution culture. Eur. J. Agron. 11, 115–122.

    Article  CAS  Google Scholar 

  • Eleftheriou E P, Moustakas M and Fragiskos N 1993 Aluminate-induced changes in morphology and ultrastructure of Thinopyrum roots. J. Exp. Bot. 44, 427–436.

    CAS  Google Scholar 

  • Fuller R D and Richardson C J 1986 Aluminate toxicity as a factor controlling plant growth in bauxite residue. Environ. Toxicol. Chem. 5, 905–916.

    CAS  Google Scholar 

  • Furrer G, Ludwig C and Schindler PW 1992 On the chemistry of the Keggin Al13 polymer. I. Acid-base properties. J. Colloid Interf. Sci. 149, 56–97.

    CAS  Google Scholar 

  • Gaind S and Gaur A C 1991 Thermotolerant phosphate solubilizing microorganisms and their interaction with mung bean. Plant Soil 133, 141–149.

    Article  CAS  Google Scholar 

  • GenStat 2002 GenStat for Windows. Release 6.1. Sixth Edition. VSN International Ltd., Oxford.

    Google Scholar 

  • Greenhouse S W and Geisser S 1959 On methods in the analysis of profile data. Psychometrika 24, 95–112.

    Article  Google Scholar 

  • Gupta V K and Mittal S B 1981 Evaluation of chemical methods for estimating available zinc and response of green gram (Phaseolus aureus Roxb) to applied zinc in non-calcareous soils. Plant Soil 63, 477–484.

    CAS  Google Scholar 

  • Hect-Buchholz C H, Brady D J, Asher C J and Edwards D G 1990 Effects of low activities of aluminium on soybean (Glycine max). II Root cell structure and root hair development. In Plant Nutrition- Physiology and Applications. Ed. M L van Beusichem. pp. 335–343. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Kerven G L, Larsen P L and Blamey F P C 1995 Detrimental sulfate effects on formation of Al-13 tridecameric polycation in synthetic soil solutions. Soil Sci. Soc. Am. J. 59, 765–771.

    CAS  Google Scholar 

  • Kinraide T B 1990 Assessing the rhizotoxicity of the aluminate ion, Al(OH) 4 . Plant Physiol. 93, 1620–1625.

    CAS  Google Scholar 

  • Kinraide T B and Parker D R 1989 Assessing the phytotoxicity of mononuclear hydroxy-aluminum. Plant Cell Environ. 12, 479–488.

    CAS  Google Scholar 

  • Kopittke P M and Menzies N W 2004 Control of nutrient solutions for studies at high pH. Plant Soil 266: 343–354.

    Google Scholar 

  • Larsen P L, Kerven G L, Bell L C and Edwards D G 1995 Effects of silicic acid on the chemistry of monomeric and polymeric (Al13) aluminium species in solutions. In Plant-soil interactions at low pH: Principles and management, Brisbane, Queensland, Australia, 12–16 September 1993, 1995. Eds. R A Date, N J Grundon, G E Rayment and M E Probert. pp. 617–621.

  • Marschner H 1995 Mineral Nutrition of Higher Plants. Academic Press, London. 889 p.

    Google Scholar 

  • Martinie G D and Schilt A A 1976 Investigation of the wet oxidation efficiencies of perchloric acid mixtures. Anal. Chem. 48, 70–74.

    Article  CAS  Google Scholar 

  • May H M, Helmke P A and Jackson M L 1979 Gibbsite solubility and thermodynamic properties of hydroxy-aluminum ions in aqueous solution at 25 °C. Geochim. Cosmochim. Ac. 43, 861–868.

    CAS  Google Scholar 

  • Nordstrom D K and May H M 1996 Aqueous equilibrium data for mononuclear aluminum species. In The Environmental Chemistry of Aluminum. Ed. G Sposito. pp. 39–80. CRC/Lewis Publishers, Boca Raton.

    Google Scholar 

  • Parker D R and Bertsch P M 1992a Formation of the ‘Al13’ tridecameric polycation under diverse synthesis conditions. Environ. Sci. Technol. 26, 914–921.

    CAS  Google Scholar 

  • Parker D R and Bertsch P M 1992b Identification and quantification of the ‘Al13’ tridecameric polycation using ferron. Environ. Sci. Technol. 26, 908–913.

    CAS  Google Scholar 

  • Parker D R, Kinraide T B and Zelazny L W 1989 On the phytotoxicity of polynuclear hydroxy-aluminum complexes. Soil Sci. Soc. Am. J. 53, 789–796.

    CAS  Google Scholar 

  • Parker D R, Zelazny L W and Kinraide T B 1988 Comparison of three spectrophotometric methods for differentiating mono- and polynuclear hydroxy-aluminum complexes. Soil Sci. Soc. Am. J. 52, 67–75.

    CAS  Google Scholar 

  • Parkhurst D 2003 PhreeqcI. United States Geological Survey.

  • Rashid A and Bughio N 1994 Plant analysis diagnostic indices for phosphorus nutrition of sunflower, mungbean, maize, and sorghum. Commun. Soil Sci. Plant Anal. 25, 2481–2489.

    CAS  Google Scholar 

  • Ryan P R, DiTomaso J M and Kochian L V 1993 Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J. Exp. Bot. 44, 437–446.

    CAS  Google Scholar 

  • Smith F W, Imrie B C and Pieters W H J 1983 Foliar Symptoms of Nutrient Disorders in mung bean (Vigna radiata). 11 pP. Commonwealth Scientific and Industrial Research Organisation, Melbourne.

    Google Scholar 

  • Smith G S, Cornforth I S and Henderson H V 1984 Iron requirements of C3 pathway and C4 pathway plants. New Phytol. 97, 543–556.

    CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y and Matsumoto H 2001 Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 125, 199–208.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Kopittke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopittke, P.M., Menzies, N.W. & Blamey, F.P.C. Rhizotoxicity of aluminate and polycationic aluminium at high pH. Plant Soil 266, 177–186 (2005). https://doi.org/10.1007/s11104-005-2229-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-2229-0

Key words

Navigation