Skip to main content
Log in

Theoretical and experimental assessment of nutrient solution composition in short-term studies of aluminium rhizotoxicity

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Many recent studies examining aluminum (Al) toxicity have failed to consider its complex chemistry, thereby leading to erroneous results.

Methods

Using modelling and experimental approaches, we focussed on the key effects of pH, P, and ionic strength on Al in nutrient solutions and resultant root elongation rate (RER) of soybean (Glycine max).

Results

A review of the literature showed that the composition of nutrient solutions (ionic strength =3 to 26 mM) in many studies differs markedly from solutions (mean ionic strength =5 mM) extracted from acid soils. Nutrient solutions should have a pH ≤ 4.5 to ensure that Al remains soluble and that the toxic Al3+ ion is the dominant species. Solutions should contain ≤5 μM P to ensure that Al is not precipitated and should have an ionic strength of < ca. 5 mM. Finally, we have shown that soybean RER is more closely related to the activity of Al3+ at the outer surface of the root-cell plasma membrane than its activity in the bulk solution.

Conclusions

This study has highlighted the crucial consideration of the kinetic and thermodynamic chemistry of Al in experiments designed to study the rhizotoxic effects of Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams F (1966) Calcium deficiency as a causal agent of ammonium phosphate injury to cotton seedlings. Soil Sci Soc Am Proc 30:485–488

    Article  CAS  Google Scholar 

  • Adams F, Lund ZF (1966) Effect of chemical activity of soil solution aluminum on cotton root penetration of acid subsoils. Soil Sci 101:193–198

    Article  CAS  Google Scholar 

  • Adams ML, Hawke DJ, Nilsson NHS, Powell KJ (2000) The relationship between soil solution pH and Al3+concentrations in a range of South Island (New Zealand) soils. Soil Res 38:141–154

    Article  CAS  Google Scholar 

  • Alvarez E, Martinez A, Calvo R (1992) Geochemical aspects of aluminium in forest soils in Galicia (N.W. Spain). Biogeochemistry 16:167–180

    Article  CAS  Google Scholar 

  • An Y, Zhou P, Xiao Q, Shi D (2014) Effects of foliar application of organic acids on alleviation of aluminum toxicity in alfalfa. J Plant Nutr Soil Sc 177:421–430

    Article  CAS  Google Scholar 

  • Asher CJ (1981) Limiting external concentrations of trace elements for plant growth: use of flowing solution culture techniques. J Plant Nutr 3:163–180

    Article  CAS  Google Scholar 

  • Asher CJ, Edwards DG (1983) Modern solution culture techniques. In: Encyclopedia of plant physiology: inorganic plant nutrition. Eds. A Lauchli and R L Bieleski. Springer-Verlag, New York, pp. 94–119

    Google Scholar 

  • Bertsch PM (1987) Conditions for Al13 polymer formation in partially neutralized aluminum solutions. Soil Sci Soc Am J 51:825–828

    Article  CAS  Google Scholar 

  • Bertsch PM, Parker DR (1996) Aqueous polynuclear aluminum species. In: Sposito G (ed) In The Environmental Chemistry of Aluminum. CRC/Lewis Publishers, Boca Raton, p. 464

    Google Scholar 

  • Blamey FPC, Hernandez-Soriano MC, Cheng M, Tang C, Paterson DJ, Lombi E, Wang WH, Scheckel KG, Kopittke PM (2015) Synchrotron-based techniques shed light on mechanisms of plant sensitivity and tolerance to high manganese in the root environment. Plant Physiol 169:2006–2020

    PubMed  PubMed Central  Google Scholar 

  • Bruce RC, Warrell LA, Edwards DG, Bell LC (1988) Effects of aluminium and calcium in the soil solution of acid soils on root elongation of Glycine max cv. Forrest. Aust J Agric Res 39:319–338

    Article  CAS  Google Scholar 

  • Büyükkeskin T, Akinci Ş, Eroğlu AE (2014) Effects of humic acid on root development and nutrient uptake of Vicia faba L. (broad bean) seedlings grown under aluminum toxicity. Commun Soil Sci Plant Anal 46:277–292

    Article  Google Scholar 

  • Cocker KM, Evans DE, Hodson MJ (1998) The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism? Physiol Plant 104:608–614

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eswaran H, Reich P, Beinroth F (1997) Global distribution of soils with acidity. In: Plant-soil interactions at low pH. Ed. A C Moniz. Brazilian Soil Science Society, Sao Paulo, pp. 159–164

    Google Scholar 

  • Goldbach HE, Yu Q, Wingender R, Schulz M, Wimmer M, Findeklee P, Baluska F (2001) Rapid response reactions of roots to boron deprivation. J Plant Nutr Soil Sc 164:173–181

    Article  CAS  Google Scholar 

  • Hagvall K, Persson P, Karlsson T (2015) Speciation of aluminum in soils and stream waters: the importance of organic matter. Chem Geol 417:32–43

    Article  CAS  Google Scholar 

  • Heinrichs H, Böttcher G, Brumsack H-J, Pohlmann M (1996) Squeezed soil-pore solutes - a comparison to lysimeter samples and percolation experiments. Water Air Soil Pollut 89:189–204

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347, University of California, Berkeley, p. 31

    Google Scholar 

  • Horst WJ, Göppel H (1986) Aluminium-toleranz von ackerbohne (Vicia faba), lupine (Lupinus luteus), gerste (Hordeum vulgare) und roggen (Secale cereale). I. Sproß- und wurzelwachstum in abhängigkeit vom aluminium-angebot. Z Pflanz Bodenkunde 149:83–93

    Article  CAS  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam AKMS, Edwards DG, Asher CJ (1980) pH optima for crop growth. Plant Soil 54:339–357

    Article  Google Scholar 

  • Kerven GL, Larsen PL, Blamey FPC (1995) Detrimental sulfate effects on formation of Al-13 tridecameric polycation in synthetic soil solutions. Soil Sci Soc Am J 59:765–771

    Article  CAS  Google Scholar 

  • Kinraide TB (1991) Identity of the rhizotoxic aluminum species. Plant Soil 134:167–178

    CAS  Google Scholar 

  • Kinraide TB (2006) Plasma membrane surface potential (ψPM) as a determinant of ion bioavailability: a critical analysis of new and published toxicological studies and a simplified method for the computation of plant ψPM. Environ Toxicol Chem 25:3188–3198

    Article  CAS  PubMed  Google Scholar 

  • Kinraide TB, Parker DR (1987) Non-phytotoxicity of the aluminum sulfate ion, AlSO4 +. Physiol Plant 71:207–212

    Article  CAS  Google Scholar 

  • Kinraide TB, Parker DR (1989) Assessing the phytotoxicity of mononuclear hydroxy-aluminum. Plant Cell Environ 12:479–488

    Article  CAS  Google Scholar 

  • Kinraide TB, Wang P (2010) The surface charge density of plant cell membranes (σ): an attempt to resolve conflicting values for intrinsic σ. J Exp Bot 61:2507–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinraide TB, Arnold RC, Baligar VC (1985) A rapid assay for aluminium phytotoxicity at submicromolar concentrations. Physiol Plant 65:245–250

    Article  CAS  Google Scholar 

  • Kopittke PM, Blamey FPC, Kinraide TB, Wang P, Reichman SM, Menzies NW (2011) Separating multiple, short-term deleterious effects of saline solutions to the growth of cowpea seedlings. New Phytol 189:1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Kopittke PM, Wang P, Menzies NW, Naidu R, Kinraide TB (2014) A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces. Plant Soil 375:35–46

    Article  CAS  Google Scholar 

  • Kopittke PM, Moore KL, Lombi E, Gianoncelli A, Ferguson BJ, Blamey FPC, Menzies NW, Nicholson TM, McKenna BA, Wang P, Gresshoff PM, Kourousias G, Webb RI, Green K, Tollenaere A (2015) Identification of the primary lesion of toxic aluminum (Al) in plant roots. Plant Physiol 167:1402–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama H, Toda T, Yokota S, Dawair Z, Hara T (1995) Effects of aluminum and pH on root growth and cell viability in Arabidopsis thaliana strain landsberg in hydroponic culture. Plant Cell Physiol 36:201–205

    CAS  Google Scholar 

  • Larsen PL, Kerven GL, Bell LC, Edwards DG (1995) Effects of silicic acid on the chemistry of monomeric and polymeric (Al13) aluminium species in solutions. In: Plant-soil interactions at low pH: principles and management. Eds. R a date, N J Grundon, G E Rayment and M E Probert. Kluwer Academic Publishers, Dordrecht, Netherlands, Brisbane, Queensland, Australia, pp. 617–621

    Chapter  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. John Wiley & Sons, New York, NY, USA, p. 449

    Google Scholar 

  • Magistad OC (1925) The aluminum content of the soil solution and its relation to soil reaction and plant growth. Soil Sci 20:181–225

    Article  Google Scholar 

  • Manoharan V, Loganathan P, Tillman RW, Parfitt RL (2007) Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth. Environ Pollut 145:778–786

    Article  CAS  PubMed  Google Scholar 

  • Menzies NW, Bell LC, Edwards DG (1994a) Exchange and solution-phase chemistry of acid, highly weathered soils. 2. Investigation of mechanisms controlling Al release into solution. Aust J Soil Res 32:269–283

    Article  CAS  Google Scholar 

  • Menzies NW, Edwards DG, Bell LC (1994b) Effects of calcium and aluminium in the soil solution of acid, surface soils on root elongation of mungbean. Aust J Soil Res 32:721–737

    Article  CAS  Google Scholar 

  • Miyasaka SC, Hue NV, Dunn MA (2006) Aluminum. In: Handbook of plant nutrition. Eds. A barker and D J Pilbeam. Taylor and Francis, Boca Raton, pp. 439–497

    Google Scholar 

  • Nordstrom DK, May HM (1996) Aqueous equilibrium data for mononuclear aluminum species. In: Sposito G (ed) The environmental chemistry of aluminum. CRC/Lewis Publishers, Boca Raton, pp. 39–80

    Google Scholar 

  • Oh M, Roy S, Kamal A, Cho K, Cho S-W, Park C-S, Choi J-S, Komatsu S, Woo S-H (2014) Proteome analysis of roots of wheat seedlings under aluminum stress. Mol Biol Rep 41:671–681

    Article  CAS  PubMed  Google Scholar 

  • Oulehle F, Hruška J (2005) Tree species (Picea abies and Fagus sylvatica) effects on soil water acidification and aluminium chemistry at sites subjected to long-term acidification in the Ore Mts., Czech Republic. J Inorg Biochem 99:1822–1829

    Article  CAS  PubMed  Google Scholar 

  • Parker DR, Norvell WA (1999) Advances in solution culture methods for plant mineral nutrition research. Adv Agron 65:151–213

    Article  CAS  Google Scholar 

  • Parkhurst D (2014) PhreeqcI v3.1.7. United States Geological Survey. http://water.usgs.gov/software/ (Accessed December 2014).

  • Rehmus A, Bigalke M, Valarezo C, Castillo J, Wilcke W (2015) Aluminum toxicity to tropical montane forest tree seedlings in Southern Ecuador. Plant Soil 388:87–97

    Article  CAS  Google Scholar 

  • Reisenauer HM (1966) Mineral nutrients in soil solution. In: Environmental biology. Eds. P L Altman and D S Dittmer. Federation of American Societies for Experimental Biology, Bethesda, MD, pp. 507–508

    Google Scholar 

  • Schneider C, Doucet F, Strekopytov S, Exley C (2004) The solubility of an hydroxyaluminosilicate. Polyhedron 23:3185–3191

    Article  CAS  Google Scholar 

  • Shaff JE, Schultz BA, Craft EJ, Clark RT, Kochian LV (2010) GEOCHEM-EZ: a chemical speciation program with greater power and flexibility. Plant Soil 330:207–214

    Article  CAS  Google Scholar 

  • Shen X, Xiao X, Dong Z, Chen Y (2014) Silicon effects on antioxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress. Acta Physiol Plant 36:3063–3069

    Article  CAS  Google Scholar 

  • Sposito G (ed) (1996) The environmental chemistry of aluminum. CRC Press, Boca Raton, Florida, p. 480

    Google Scholar 

  • Taylor GJ, Stadt KJ, Dale MRT (1991) Modeling the phytotoxicity of aluminum, cadmium, copper, manganese, nickel, and zinc using the Weibull frequency-distribution. Can J Bot 69:359–367

    Article  CAS  Google Scholar 

  • Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto YY, Koyama H (2015) Sensitive to proton rhizotoxicity1, calmodulin binding transcription activator2, and other transcription factors are involved in aluminum-activated malate transporter1 expression. Plant Physiol 167:991–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler DM, Edmeades DC (1995) Effect of depth and lime or phosphorus-fertilizer applications on the soil solution chemistry of some New Zealand pastoral soils. Aust J Soil Res 33:461–476

    Article  CAS  Google Scholar 

  • Wheeler DM, Edmeades DC, Christie RA, Gardner R (1992) Effect of aluminium on the growth of 34 plant species: a summary of results obtained in low ionic strength solution culture. Plant Soil 146:61–66

    Article  CAS  Google Scholar 

  • Yang M, Tan L, Xu Y, Zhao Y, Cheng F, Ye S, Jiang W (2015) Effect of low pH and aluminum toxicity on the photosynthetic characteristics of different fast-growing Eucalyptus vegetatively propagated clones. PLoS ONE 10, e0130963.

  • Zhang HH, Jiang Z, Qin R, Zhang HN, Zou JH, Jiang WS, Liu DH (2014) Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana. BMC Plant Biol 14

Download references

Acknowledgments

This work was supported by the Australian Research Council (ARC) Future Fellowship (FT120100277 to P.M.K.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Kopittke.

Additional information

Responsible Editor: Juan Barcelo.

Electronic Supplementary Materials

ESM 1

(PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopittke, P.M., Blamey, F.P.C. Theoretical and experimental assessment of nutrient solution composition in short-term studies of aluminium rhizotoxicity. Plant Soil 406, 311–326 (2016). https://doi.org/10.1007/s11104-016-2890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2890-5

Keywords

Navigation